|
import tensorflow as tf |
|
|
|
from data.utils import clean_task_instruction, euler_to_rotation_matrix, rotation_matrix_to_ortho6d |
|
|
|
|
|
def process_step(step: dict) -> dict: |
|
""" |
|
Unify the action format and clean the task instruction. |
|
|
|
DO NOT use python list, use tf.TensorArray instead. |
|
""" |
|
|
|
arm_action = step['action'] |
|
|
|
|
|
step['action'] = {} |
|
action = step['action'] |
|
action['arm_concat'] = arm_action |
|
|
|
action['format'] = tf.constant( |
|
"eef_vel_x,eef_vel_y,eef_vel_z,eef_angular_vel_roll,eef_angular_vel_pitch,eef_angular_vel_yaw,gripper_open") |
|
action['terminate'] = step['is_terminal'] |
|
|
|
|
|
state = step['observation'] |
|
eef_pos = state['xyz'] |
|
|
|
eef_pos = tf.clip_by_value(eef_pos, -10, 10) |
|
eef_ang = state['rot'] |
|
eef_ang = euler_to_rotation_matrix(eef_ang) |
|
eef_ang = rotation_matrix_to_ortho6d(eef_ang) |
|
grip_pos = state['gripper'] |
|
|
|
|
|
state['arm_concat'] = tf.concat([ |
|
grip_pos,eef_pos,eef_ang], axis=0) |
|
|
|
|
|
state['format'] = tf.constant( |
|
"gripper_open,eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5") |
|
|
|
|
|
|
|
replacements = { |
|
'_': ' ', |
|
'1f': ' ', |
|
'4f': ' ', |
|
'-': ' ', |
|
'50': ' ', |
|
'55': ' ', |
|
'56': ' ', |
|
} |
|
instr = step['language_instruction'] |
|
instr = clean_task_instruction(instr, replacements) |
|
step['observation']['natural_language_instruction'] = instr |
|
|
|
return step |
|
|
|
|
|
if __name__ == "__main__": |
|
import tensorflow_datasets as tfds |
|
from data.utils import dataset_to_path |
|
from tqdm import tqdm |
|
import numpy as np |
|
|
|
DATASET_DIR = 'data/datasets/openx_embod' |
|
DATASET_NAME = 'dobbe' |
|
|
|
dataset = tfds.builder_from_directory( |
|
builder_dir=dataset_to_path( |
|
DATASET_NAME, DATASET_DIR)) |
|
dataset = dataset.as_dataset(split='all') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i, episode in tqdm(enumerate(dataset), total=5208): |
|
res = [] |
|
for step in episode['steps']: |
|
res.append(step['observation']['xyz'].numpy()) |
|
max_val = np.max(np.abs(res)) |
|
if max_val > 2: |
|
print(f"Episode {i} has a max value of {max_val}") |
|
|