|
import tensorflow as tf |
|
|
|
from data.utils import clean_task_instruction, euler_to_rotation_matrix, rotation_matrix_to_ortho6d |
|
|
|
|
|
def process_step(step: dict) -> dict: |
|
""" |
|
Unify the action format and clean the task instruction. |
|
|
|
DO NOT use python list, use tf.TensorArray instead. |
|
""" |
|
|
|
action_dict = step['action_dict'] |
|
|
|
|
|
eef_pos = action_dict['cartesian_position'][:3] |
|
eef_ang = action_dict['cartesian_position'][3:6] |
|
eef_ang = euler_to_rotation_matrix(eef_ang) |
|
eef_ang = rotation_matrix_to_ortho6d(eef_ang) |
|
eef_pos_vel = action_dict['cartesian_velocity'][:3] |
|
eef_ang_vel = action_dict['cartesian_velocity'][3:6] |
|
joint_pos = action_dict['joint_position'] |
|
joint_vel = action_dict['joint_velocity'] |
|
grip_pos = action_dict['gripper_position'] |
|
grip_vel = action_dict['gripper_velocity'] |
|
|
|
|
|
step['action'] = {} |
|
action = step['action'] |
|
|
|
arm_action = tf.concat([eef_pos, eef_ang, eef_pos_vel, eef_ang_vel, joint_pos, joint_vel, grip_pos, grip_vel], axis=0) |
|
action['arm_concat'] = arm_action |
|
action['terminate'] = step['is_terminal'] |
|
|
|
|
|
action['format'] = tf.constant( |
|
"eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5,eef_vel_x,eef_vel_y,eef_vel_z,eef_angular_vel_roll,eef_angular_vel_pitch,eef_angular_vel_yaw,arm_joint_0_pos,arm_joint_1_pos,arm_joint_2_pos,arm_joint_3_pos,arm_joint_4_pos,arm_joint_5_pos,arm_joint_6_pos,arm_joint_0_vel,arm_joint_1_vel,arm_joint_2_vel,arm_joint_3_vel,arm_joint_4_vel,arm_joint_5_vel,arm_joint_6_vel,gripper_joint_0_pos,gripper_joint_0_vel") |
|
|
|
|
|
|
|
state = step['observation'] |
|
eef_pos = state['cartesian_position'][:3] |
|
eef_ang = state['cartesian_position'][3:6] |
|
eef_ang = euler_to_rotation_matrix(eef_ang) |
|
eef_ang = rotation_matrix_to_ortho6d(eef_ang) |
|
joint_pos = state['joint_position'] |
|
grip_pos = 1 - state['gripper_position'] |
|
|
|
|
|
state['arm_concat'] = tf.concat([ |
|
joint_pos,grip_pos,eef_pos,eef_ang], axis=0) |
|
|
|
|
|
|
|
state['format'] = tf.constant( |
|
"arm_joint_0_pos,arm_joint_1_pos,arm_joint_2_pos,arm_joint_3_pos,arm_joint_4_pos,arm_joint_5_pos,arm_joint_6_pos,gripper_joint_0_pos,eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5") |
|
|
|
|
|
|
|
replacements = { |
|
'_': ' ', |
|
'1f': ' ', |
|
'4f': ' ', |
|
'-': ' ', |
|
'50': ' ', |
|
'55': ' ', |
|
'56': ' ', |
|
|
|
} |
|
instr = step['language_instruction'] |
|
instr = clean_task_instruction(instr, replacements) |
|
step['observation']['natural_language_instruction'] = instr |
|
|
|
return step |
|
|
|
|
|
if __name__ == "__main__": |
|
pass |
|
|