|
import tensorflow as tf |
|
|
|
from data.utils import clean_task_instruction, euler_to_rotation_matrix, rotation_matrix_to_ortho6d |
|
|
|
def process_step(step: dict) -> dict: |
|
""" |
|
Unify the action format and clean the task instruction. |
|
|
|
DO NOT use python list, use tf.TensorArray instead. |
|
""" |
|
|
|
|
|
origin_action = step['action'] |
|
step['action']={} |
|
action=step['action'] |
|
action['terminate'] = step['is_terminal'] |
|
|
|
eef_vel = origin_action[:3] |
|
eef_ang_vel=origin_action[3:6] |
|
|
|
|
|
|
|
action['arm_concat'] = tf.concat([eef_vel,eef_ang_vel],axis=0) |
|
|
|
|
|
action['format'] = tf.constant( |
|
"eef_vel_x,eef_vel_y,eef_vel_z,eef_angular_vel_roll,eef_angular_vel_pitch,eef_angular_vel_yaw") |
|
|
|
|
|
state = step['observation'] |
|
|
|
eef_pos = state['state'][:3] |
|
eef_ang = tf.gather(state['state'][3:6], [2, 1, 0]) |
|
eef_ang = euler_to_rotation_matrix(eef_ang) |
|
eef_ang = rotation_matrix_to_ortho6d(eef_ang) |
|
grip_open=state['state'][6:7] |
|
|
|
state['arm_concat'] = tf.concat([eef_pos,eef_ang,grip_open],axis=0) |
|
|
|
|
|
state['format'] = tf.constant( |
|
"eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5,gripper_open") |
|
|
|
|
|
replacements = { |
|
'_': ' ', |
|
'1f': ' ', |
|
'4f': ' ', |
|
'-': ' ', |
|
'50': ' ', |
|
'55': ' ', |
|
'56': ' ', |
|
|
|
} |
|
instr = step['language_instruction'] |
|
instr = clean_task_instruction(instr, replacements) |
|
step['observation']['natural_language_instruction'] = instr |
|
|
|
return step |
|
|
|
|
|
if __name__ == "__main__": |
|
import tensorflow_datasets as tfds |
|
from data.utils import dataset_to_path |
|
|
|
DATASET_DIR = 'data/datasets/openx_embod' |
|
DATASET_NAME = 'eth_agent_affordances' |
|
|
|
dataset = tfds.builder_from_directory( |
|
builder_dir=dataset_to_path( |
|
DATASET_NAME, DATASET_DIR)) |
|
dataset = dataset.as_dataset(split='all') |
|
|
|
|
|
for episode in dataset: |
|
for step in episode['steps']: |
|
print(step) |
|
|