RoboticsDiffusionTransformer
/
data
/preprocess_scripts
/maniskill_dataset_converted_externally_to_rlds.py
import tensorflow as tf | |
from data.utils import clean_task_instruction, quaternion_to_euler, euler_to_quaternion | |
def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: | |
""" | |
Convert terminate action to a boolean, where True means terminate. | |
""" | |
return tf.reduce_all(tf.equal(terminate_act, tf.constant([1, 0, 0], dtype=tf.int32))) | |
def process_step(step: dict) -> dict: | |
""" | |
Unify the action format and clean the task instruction. | |
DO NOT use python list, use tf.TensorArray instead. | |
""" | |
# Convert raw action to our action | |
action = step['action'] | |
# Robot action, consists of [3x end effector delta target position, 3x end effector delta target orientation in axis-angle format, 1x gripper target position (mimic for two fingers)]. | |
# For delta target position, an action of -1 maps to a robot movement of -0.1m, and action of 1 maps to a movement of 0.1m. | |
# For delta target orientation, its encoded angle is mapped to a range of [-0.1rad, 0.1rad] for robot execution. For example, an action of [1, 0, 0] means rotating along the x-axis by 0.1 rad. | |
# For gripper target position, an action of -1 means close, and an action of 1 means open. | |
eef_delta_pos = action[:3] * 0.1 | |
eef_ang = action[3:6] * 0.1 | |
eef_ang = euler_to_quaternion(eef_ang) | |
grip_open = tf.expand_dims((action[6] + 1) / 2, axis=0) | |
# Concatenate the action | |
step['action'] = {} | |
action = step['action'] | |
arm_action = tf.concat([eef_delta_pos, eef_ang, grip_open], axis=0) | |
action['arm_concat'] = arm_action | |
action['terminate'] = step['is_terminal'] | |
# Write the action format | |
action['format'] = tf.constant( | |
"eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z,eef_delta_angle_x,eef_delta_angle_y,eef_delta_angle_z,eef_delta_angle_w,gripper_open") | |
# Convert raw state to our state | |
# Robot state, consists of [7x robot joint angles, 2x gripper position, 7x robot joint angle velocity, 2x gripper velocity]. Angle in radians, position in meters. | |
state = step['observation']['state'] | |
arm_joint_pos = state[:7] | |
gripper_pos = state[7:9] * 25 # rescale to [0, 1] | |
# We do not use velocity since it is very inaccurate in this environment | |
# arm_joint_vel = state[9:16] | |
# gripper_vel = state[16:18] | |
# Concatenate the state | |
state = step['observation'] | |
state['arm_concat'] = tf.concat([ | |
arm_joint_pos, gripper_pos], axis=0) | |
# Robot base pose in the world frame, consists of [x, y, z, qw, qx, qy, qz]. | |
# The first three dimensions represent xyz positions in meters. The last four dimensions are the quaternion representation of rotation | |
# base_pose = step['observation']['base_pose'] | |
# base_pose_xyz = base_pose[:3] | |
# base_pose_ang = quaternion_to_euler(base_pose[3:]) | |
# processed_base_pose = tf.concat([base_pose_xyz, base_pose_ang], axis=0) | |
# state['arm_concat'] = tf.concat([state['arm_concat'], processed_base_pose], axis=0) | |
# Write the state format | |
state['format'] = tf.constant( | |
"arm_joint_0_pos,arm_joint_1_pos,arm_joint_2_pos,arm_joint_3_pos,arm_joint_4_pos,arm_joint_5_pos,arm_joint_6_pos,gripper_joint_0_pos,gripper_joint_1_pos") | |
# Clean the task instruction | |
# Define the replacements (old, new) as a dictionary | |
replacements = { | |
'_': ' ', | |
'1f': ' ', | |
'4f': ' ', | |
'-': ' ', | |
'50': ' ', | |
'55': ' ', | |
'56': ' ', | |
} | |
instr = step['language_instruction'] | |
instr = clean_task_instruction(instr, replacements) | |
step['observation']['natural_language_instruction'] = instr | |
return step | |
if __name__ == "__main__": | |
import tensorflow_datasets as tfds | |
from data.utils import dataset_to_path | |
DATASET_DIR = 'data/datasets/openx_embod' | |
DATASET_NAME = 'maniskill_dataset_converted_externally_to_rlds' | |
# Load the dataset | |
dataset = tfds.builder_from_directory( | |
builder_dir=dataset_to_path( | |
DATASET_NAME, DATASET_DIR)) | |
dataset = dataset.as_dataset(split='all') | |
# Inspect the dataset | |
for episode in dataset.take(1): | |
for step in episode['steps']: | |
print(step['is_last']) | |