euijinrnd's picture
Add files using upload-large-folder tool
9de9fbf verified
import torch
from transformers import AutoTokenizer, T5EncoderModel
class T5Embedder:
available_models = ["google/t5-v1_1-xxl"]
def __init__(
self,
device,
from_pretrained=None,
*,
cache_dir=None,
hf_token=None,
use_text_preprocessing=True,
t5_model_kwargs=None,
torch_dtype=None,
use_offload_folder=None,
model_max_length=120,
local_files_only=False,
):
self.device = torch.device(device)
self.torch_dtype = torch_dtype or torch.bfloat16
self.cache_dir = cache_dir
if t5_model_kwargs is None:
t5_model_kwargs = {
"low_cpu_mem_usage": True,
"torch_dtype": self.torch_dtype,
}
if use_offload_folder is not None:
t5_model_kwargs["offload_folder"] = use_offload_folder
t5_model_kwargs["device_map"] = {
"shared": self.device,
"encoder.embed_tokens": self.device,
"encoder.block.0": self.device,
"encoder.block.1": self.device,
"encoder.block.2": self.device,
"encoder.block.3": self.device,
"encoder.block.4": self.device,
"encoder.block.5": self.device,
"encoder.block.6": self.device,
"encoder.block.7": self.device,
"encoder.block.8": self.device,
"encoder.block.9": self.device,
"encoder.block.10": self.device,
"encoder.block.11": self.device,
"encoder.block.12": "disk",
"encoder.block.13": "disk",
"encoder.block.14": "disk",
"encoder.block.15": "disk",
"encoder.block.16": "disk",
"encoder.block.17": "disk",
"encoder.block.18": "disk",
"encoder.block.19": "disk",
"encoder.block.20": "disk",
"encoder.block.21": "disk",
"encoder.block.22": "disk",
"encoder.block.23": "disk",
"encoder.final_layer_norm": "disk",
"encoder.dropout": "disk",
}
else:
t5_model_kwargs["device_map"] = {
"shared": self.device,
"encoder": self.device,
}
self.use_text_preprocessing = use_text_preprocessing
self.hf_token = hf_token
assert from_pretrained in self.available_models
self.tokenizer = AutoTokenizer.from_pretrained(
from_pretrained,
model_max_length=model_max_length,
cache_dir=cache_dir,
local_files_only=local_files_only,
)
self.model = T5EncoderModel.from_pretrained(
from_pretrained,
cache_dir=cache_dir,
local_files_only=local_files_only,
**t5_model_kwargs,
).eval()
self.model_max_length = model_max_length
def get_text_embeddings(self, texts):
text_tokens_and_mask = self.tokenizer(
texts,
max_length=self.model_max_length,
padding="longest",
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
input_ids = text_tokens_and_mask["input_ids"].to(self.device)
attention_mask = text_tokens_and_mask["attention_mask"].to(self.device)
with torch.no_grad():
text_encoder_embs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
)["last_hidden_state"].detach()
return text_encoder_embs, attention_mask