|
|
|
|
|
""" |
|
#!/usr/bin/python3 |
|
""" |
|
|
|
import argparse |
|
import sys |
|
import threading |
|
import time |
|
import yaml |
|
from collections import deque |
|
|
|
import numpy as np |
|
import rospy |
|
import torch |
|
from cv_bridge import CvBridge |
|
from geometry_msgs.msg import Twist |
|
from nav_msgs.msg import Odometry |
|
from PIL import Image as PImage |
|
from sensor_msgs.msg import Image, JointState |
|
from std_msgs.msg import Header |
|
import cv2 |
|
|
|
from scripts.agilex_model import create_model |
|
|
|
|
|
|
|
CAMERA_NAMES = ['cam_high', 'cam_right_wrist', 'cam_left_wrist'] |
|
|
|
observation_window = None |
|
|
|
lang_embeddings = None |
|
|
|
|
|
preload_images = None |
|
|
|
|
|
|
|
def make_policy(args): |
|
with open(args.config_path, "r") as fp: |
|
config = yaml.safe_load(fp) |
|
args.config = config |
|
|
|
|
|
pretrained_vision_encoder_name_or_path = "google/siglip-so400m-patch14-384" |
|
model = create_model( |
|
args=args.config, |
|
dtype=torch.bfloat16, |
|
pretrained=args.pretrained_model_name_or_path, |
|
|
|
pretrained_vision_encoder_name_or_path=pretrained_vision_encoder_name_or_path, |
|
control_frequency=args.ctrl_freq, |
|
) |
|
|
|
return model |
|
|
|
|
|
def set_seed(seed): |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
|
|
|
|
def interpolate_action(args, prev_action, cur_action): |
|
steps = np.concatenate((np.array(args.arm_steps_length), np.array(args.arm_steps_length)), axis=0) |
|
diff = np.abs(cur_action - prev_action) |
|
step = np.ceil(diff / steps).astype(int) |
|
step = np.max(step) |
|
if step <= 1: |
|
return cur_action[np.newaxis, :] |
|
new_actions = np.linspace(prev_action, cur_action, step + 1) |
|
return new_actions[1:] |
|
|
|
|
|
def get_config(args): |
|
config = { |
|
'episode_len': args.max_publish_step, |
|
'state_dim': 14, |
|
'chunk_size': args.chunk_size, |
|
'camera_names': CAMERA_NAMES, |
|
} |
|
return config |
|
|
|
|
|
|
|
def get_ros_observation(args,ros_operator): |
|
rate = rospy.Rate(args.publish_rate) |
|
print_flag = True |
|
|
|
while True and not rospy.is_shutdown(): |
|
result = ros_operator.get_frame() |
|
if not result: |
|
if print_flag: |
|
print("syn fail when get_ros_observation") |
|
print_flag = False |
|
rate.sleep() |
|
continue |
|
print_flag = True |
|
(img_front, img_left, img_right, img_front_depth, img_left_depth, img_right_depth, |
|
puppet_arm_left, puppet_arm_right, robot_base) = result |
|
|
|
return (img_front, img_left, img_right, |
|
puppet_arm_left, puppet_arm_right) |
|
|
|
|
|
|
|
def update_observation_window(args, config, ros_operator): |
|
|
|
|
|
def jpeg_mapping(img): |
|
img = cv2.imencode('.jpg', img)[1].tobytes() |
|
img = cv2.imdecode(np.frombuffer(img, np.uint8), cv2.IMREAD_COLOR) |
|
return img |
|
|
|
global observation_window |
|
if observation_window is None: |
|
observation_window = deque(maxlen=2) |
|
|
|
|
|
observation_window.append( |
|
{ |
|
'qpos': None, |
|
'images': |
|
{ |
|
config["camera_names"][0]: None, |
|
config["camera_names"][1]: None, |
|
config["camera_names"][2]: None, |
|
}, |
|
} |
|
) |
|
|
|
img_front, img_left, img_right, puppet_arm_left, puppet_arm_right = get_ros_observation(args,ros_operator) |
|
img_front = jpeg_mapping(img_front) |
|
img_left = jpeg_mapping(img_left) |
|
img_right = jpeg_mapping(img_right) |
|
|
|
qpos = np.concatenate( |
|
(np.array(puppet_arm_left.position), np.array(puppet_arm_right.position)), axis=0) |
|
qpos = torch.from_numpy(qpos).float().cuda() |
|
observation_window.append( |
|
{ |
|
'qpos': qpos, |
|
'images': |
|
{ |
|
config["camera_names"][0]: img_front, |
|
config["camera_names"][1]: img_right, |
|
config["camera_names"][2]: img_left, |
|
}, |
|
} |
|
) |
|
|
|
|
|
|
|
def inference_fn(args, config, policy, t): |
|
global observation_window |
|
global lang_embeddings |
|
|
|
|
|
while True and not rospy.is_shutdown(): |
|
time1 = time.time() |
|
|
|
|
|
image_arrs = [ |
|
observation_window[-2]['images'][config['camera_names'][0]], |
|
observation_window[-2]['images'][config['camera_names'][1]], |
|
observation_window[-2]['images'][config['camera_names'][2]], |
|
|
|
observation_window[-1]['images'][config['camera_names'][0]], |
|
observation_window[-1]['images'][config['camera_names'][1]], |
|
observation_window[-1]['images'][config['camera_names'][2]] |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
images = [PImage.fromarray(arr) if arr is not None else None |
|
for arr in image_arrs] |
|
|
|
|
|
|
|
|
|
|
|
proprio = observation_window[-1]['qpos'] |
|
|
|
proprio = proprio.unsqueeze(0) |
|
|
|
|
|
actions = policy.step( |
|
proprio=proprio, |
|
images=images, |
|
text_embeds=lang_embeddings |
|
).squeeze(0).cpu().numpy() |
|
|
|
|
|
print(f"Model inference time: {time.time() - time1} s") |
|
|
|
|
|
return actions |
|
|
|
|
|
|
|
def model_inference(args, config, ros_operator): |
|
global lang_embeddings |
|
|
|
|
|
policy = make_policy(args) |
|
|
|
lang_dict = torch.load(args.lang_embeddings_path) |
|
print(f"Running with instruction: \"{lang_dict['instruction']}\" from \"{lang_dict['name']}\"") |
|
lang_embeddings = lang_dict["embeddings"] |
|
|
|
max_publish_step = config['episode_len'] |
|
chunk_size = config['chunk_size'] |
|
|
|
|
|
left0 = [-0.00133514404296875, 0.00209808349609375, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, 3.557830810546875] |
|
right0 = [-0.00133514404296875, 0.00438690185546875, 0.034523963928222656, -0.053597450256347656, -0.00476837158203125, -0.00209808349609375, 3.557830810546875] |
|
left1 = [-0.00133514404296875, 0.00209808349609375, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, -0.3393220901489258] |
|
right1 = [-0.00133514404296875, 0.00247955322265625, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, -0.3397035598754883] |
|
ros_operator.puppet_arm_publish_continuous(left0, right0) |
|
input("Press enter to continue") |
|
ros_operator.puppet_arm_publish_continuous(left1, right1) |
|
|
|
pre_action = np.zeros(config['state_dim']) |
|
pre_action[:14] = np.array( |
|
[-0.00133514404296875, 0.00209808349609375, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, -0.3393220901489258] + |
|
[-0.00133514404296875, 0.00247955322265625, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, -0.3397035598754883] |
|
) |
|
action = None |
|
|
|
with torch.inference_mode(): |
|
while True and not rospy.is_shutdown(): |
|
|
|
t = 0 |
|
rate = rospy.Rate(args.publish_rate) |
|
|
|
action_buffer = np.zeros([chunk_size, config['state_dim']]) |
|
|
|
while t < max_publish_step and not rospy.is_shutdown(): |
|
|
|
update_observation_window(args, config, ros_operator) |
|
|
|
|
|
if t % chunk_size == 0: |
|
|
|
action_buffer = inference_fn(args, config, policy, t).copy() |
|
|
|
raw_action = action_buffer[t % chunk_size] |
|
action = raw_action |
|
|
|
if args.use_actions_interpolation: |
|
|
|
interp_actions = interpolate_action(args, pre_action, action) |
|
else: |
|
interp_actions = action[np.newaxis, :] |
|
|
|
for act in interp_actions: |
|
left_action = act[:7] |
|
right_action = act[7:14] |
|
|
|
if not args.disable_puppet_arm: |
|
ros_operator.puppet_arm_publish(left_action, right_action) |
|
|
|
if args.use_robot_base: |
|
vel_action = act[14:16] |
|
ros_operator.robot_base_publish(vel_action) |
|
rate.sleep() |
|
|
|
t += 1 |
|
|
|
print("Published Step", t) |
|
pre_action = action.copy() |
|
|
|
|
|
|
|
class RosOperator: |
|
def __init__(self, args): |
|
self.robot_base_deque = None |
|
self.puppet_arm_right_deque = None |
|
self.puppet_arm_left_deque = None |
|
self.img_front_deque = None |
|
self.img_right_deque = None |
|
self.img_left_deque = None |
|
self.img_front_depth_deque = None |
|
self.img_right_depth_deque = None |
|
self.img_left_depth_deque = None |
|
self.bridge = None |
|
self.puppet_arm_left_publisher = None |
|
self.puppet_arm_right_publisher = None |
|
self.robot_base_publisher = None |
|
self.puppet_arm_publish_thread = None |
|
self.puppet_arm_publish_lock = None |
|
self.args = args |
|
self.init() |
|
self.init_ros() |
|
|
|
def init(self): |
|
self.bridge = CvBridge() |
|
self.img_left_deque = deque() |
|
self.img_right_deque = deque() |
|
self.img_front_deque = deque() |
|
self.img_left_depth_deque = deque() |
|
self.img_right_depth_deque = deque() |
|
self.img_front_depth_deque = deque() |
|
self.puppet_arm_left_deque = deque() |
|
self.puppet_arm_right_deque = deque() |
|
self.robot_base_deque = deque() |
|
self.puppet_arm_publish_lock = threading.Lock() |
|
self.puppet_arm_publish_lock.acquire() |
|
|
|
def puppet_arm_publish(self, left, right): |
|
joint_state_msg = JointState() |
|
joint_state_msg.header = Header() |
|
joint_state_msg.header.stamp = rospy.Time.now() |
|
joint_state_msg.name = ['joint0', 'joint1', 'joint2', 'joint3', 'joint4', 'joint5', 'joint6'] |
|
joint_state_msg.position = left |
|
self.puppet_arm_left_publisher.publish(joint_state_msg) |
|
joint_state_msg.position = right |
|
self.puppet_arm_right_publisher.publish(joint_state_msg) |
|
|
|
def robot_base_publish(self, vel): |
|
vel_msg = Twist() |
|
vel_msg.linear.x = vel[0] |
|
vel_msg.linear.y = 0 |
|
vel_msg.linear.z = 0 |
|
vel_msg.angular.x = 0 |
|
vel_msg.angular.y = 0 |
|
vel_msg.angular.z = vel[1] |
|
self.robot_base_publisher.publish(vel_msg) |
|
|
|
def puppet_arm_publish_continuous(self, left, right): |
|
rate = rospy.Rate(self.args.publish_rate) |
|
left_arm = None |
|
right_arm = None |
|
while True and not rospy.is_shutdown(): |
|
if len(self.puppet_arm_left_deque) != 0: |
|
left_arm = list(self.puppet_arm_left_deque[-1].position) |
|
if len(self.puppet_arm_right_deque) != 0: |
|
right_arm = list(self.puppet_arm_right_deque[-1].position) |
|
if left_arm is None or right_arm is None: |
|
rate.sleep() |
|
continue |
|
else: |
|
break |
|
left_symbol = [1 if left[i] - left_arm[i] > 0 else -1 for i in range(len(left))] |
|
right_symbol = [1 if right[i] - right_arm[i] > 0 else -1 for i in range(len(right))] |
|
flag = True |
|
step = 0 |
|
while flag and not rospy.is_shutdown(): |
|
if self.puppet_arm_publish_lock.acquire(False): |
|
return |
|
left_diff = [abs(left[i] - left_arm[i]) for i in range(len(left))] |
|
right_diff = [abs(right[i] - right_arm[i]) for i in range(len(right))] |
|
flag = False |
|
for i in range(len(left)): |
|
if left_diff[i] < self.args.arm_steps_length[i]: |
|
left_arm[i] = left[i] |
|
else: |
|
left_arm[i] += left_symbol[i] * self.args.arm_steps_length[i] |
|
flag = True |
|
for i in range(len(right)): |
|
if right_diff[i] < self.args.arm_steps_length[i]: |
|
right_arm[i] = right[i] |
|
else: |
|
right_arm[i] += right_symbol[i] * self.args.arm_steps_length[i] |
|
flag = True |
|
joint_state_msg = JointState() |
|
joint_state_msg.header = Header() |
|
joint_state_msg.header.stamp = rospy.Time.now() |
|
joint_state_msg.name = ['joint0', 'joint1', 'joint2', 'joint3', 'joint4', 'joint5', 'joint6'] |
|
joint_state_msg.position = left_arm |
|
self.puppet_arm_left_publisher.publish(joint_state_msg) |
|
joint_state_msg.position = right_arm |
|
self.puppet_arm_right_publisher.publish(joint_state_msg) |
|
step += 1 |
|
print("puppet_arm_publish_continuous:", step) |
|
rate.sleep() |
|
|
|
def puppet_arm_publish_linear(self, left, right): |
|
num_step = 100 |
|
rate = rospy.Rate(200) |
|
|
|
left_arm = None |
|
right_arm = None |
|
|
|
while True and not rospy.is_shutdown(): |
|
if len(self.puppet_arm_left_deque) != 0: |
|
left_arm = list(self.puppet_arm_left_deque[-1].position) |
|
if len(self.puppet_arm_right_deque) != 0: |
|
right_arm = list(self.puppet_arm_right_deque[-1].position) |
|
if left_arm is None or right_arm is None: |
|
rate.sleep() |
|
continue |
|
else: |
|
break |
|
|
|
traj_left_list = np.linspace(left_arm, left, num_step) |
|
traj_right_list = np.linspace(right_arm, right, num_step) |
|
|
|
for i in range(len(traj_left_list)): |
|
traj_left = traj_left_list[i] |
|
traj_right = traj_right_list[i] |
|
traj_left[-1] = left[-1] |
|
traj_right[-1] = right[-1] |
|
joint_state_msg = JointState() |
|
joint_state_msg.header = Header() |
|
joint_state_msg.header.stamp = rospy.Time.now() |
|
joint_state_msg.name = ['joint0', 'joint1', 'joint2', 'joint3', 'joint4', 'joint5', 'joint6'] |
|
joint_state_msg.position = traj_left |
|
self.puppet_arm_left_publisher.publish(joint_state_msg) |
|
joint_state_msg.position = traj_right |
|
self.puppet_arm_right_publisher.publish(joint_state_msg) |
|
rate.sleep() |
|
|
|
def puppet_arm_publish_continuous_thread(self, left, right): |
|
if self.puppet_arm_publish_thread is not None: |
|
self.puppet_arm_publish_lock.release() |
|
self.puppet_arm_publish_thread.join() |
|
self.puppet_arm_publish_lock.acquire(False) |
|
self.puppet_arm_publish_thread = None |
|
self.puppet_arm_publish_thread = threading.Thread(target=self.puppet_arm_publish_continuous, args=(left, right)) |
|
self.puppet_arm_publish_thread.start() |
|
|
|
def get_frame(self): |
|
if len(self.img_left_deque) == 0 or len(self.img_right_deque) == 0 or len(self.img_front_deque) == 0 or \ |
|
(self.args.use_depth_image and (len(self.img_left_depth_deque) == 0 or len(self.img_right_depth_deque) == 0 or len(self.img_front_depth_deque) == 0)): |
|
return False |
|
if self.args.use_depth_image: |
|
frame_time = min([self.img_left_deque[-1].header.stamp.to_sec(), self.img_right_deque[-1].header.stamp.to_sec(), self.img_front_deque[-1].header.stamp.to_sec(), |
|
self.img_left_depth_deque[-1].header.stamp.to_sec(), self.img_right_depth_deque[-1].header.stamp.to_sec(), self.img_front_depth_deque[-1].header.stamp.to_sec()]) |
|
else: |
|
frame_time = min([self.img_left_deque[-1].header.stamp.to_sec(), self.img_right_deque[-1].header.stamp.to_sec(), self.img_front_deque[-1].header.stamp.to_sec()]) |
|
|
|
if len(self.img_left_deque) == 0 or self.img_left_deque[-1].header.stamp.to_sec() < frame_time: |
|
return False |
|
if len(self.img_right_deque) == 0 or self.img_right_deque[-1].header.stamp.to_sec() < frame_time: |
|
return False |
|
if len(self.img_front_deque) == 0 or self.img_front_deque[-1].header.stamp.to_sec() < frame_time: |
|
return False |
|
if len(self.puppet_arm_left_deque) == 0 or self.puppet_arm_left_deque[-1].header.stamp.to_sec() < frame_time: |
|
return False |
|
if len(self.puppet_arm_right_deque) == 0 or self.puppet_arm_right_deque[-1].header.stamp.to_sec() < frame_time: |
|
return False |
|
if self.args.use_depth_image and (len(self.img_left_depth_deque) == 0 or self.img_left_depth_deque[-1].header.stamp.to_sec() < frame_time): |
|
return False |
|
if self.args.use_depth_image and (len(self.img_right_depth_deque) == 0 or self.img_right_depth_deque[-1].header.stamp.to_sec() < frame_time): |
|
return False |
|
if self.args.use_depth_image and (len(self.img_front_depth_deque) == 0 or self.img_front_depth_deque[-1].header.stamp.to_sec() < frame_time): |
|
return False |
|
if self.args.use_robot_base and (len(self.robot_base_deque) == 0 or self.robot_base_deque[-1].header.stamp.to_sec() < frame_time): |
|
return False |
|
|
|
while self.img_left_deque[0].header.stamp.to_sec() < frame_time: |
|
self.img_left_deque.popleft() |
|
img_left = self.bridge.imgmsg_to_cv2(self.img_left_deque.popleft(), 'passthrough') |
|
|
|
while self.img_right_deque[0].header.stamp.to_sec() < frame_time: |
|
self.img_right_deque.popleft() |
|
img_right = self.bridge.imgmsg_to_cv2(self.img_right_deque.popleft(), 'passthrough') |
|
|
|
while self.img_front_deque[0].header.stamp.to_sec() < frame_time: |
|
self.img_front_deque.popleft() |
|
img_front = self.bridge.imgmsg_to_cv2(self.img_front_deque.popleft(), 'passthrough') |
|
|
|
while self.puppet_arm_left_deque[0].header.stamp.to_sec() < frame_time: |
|
self.puppet_arm_left_deque.popleft() |
|
puppet_arm_left = self.puppet_arm_left_deque.popleft() |
|
|
|
while self.puppet_arm_right_deque[0].header.stamp.to_sec() < frame_time: |
|
self.puppet_arm_right_deque.popleft() |
|
puppet_arm_right = self.puppet_arm_right_deque.popleft() |
|
|
|
img_left_depth = None |
|
if self.args.use_depth_image: |
|
while self.img_left_depth_deque[0].header.stamp.to_sec() < frame_time: |
|
self.img_left_depth_deque.popleft() |
|
img_left_depth = self.bridge.imgmsg_to_cv2(self.img_left_depth_deque.popleft(), 'passthrough') |
|
|
|
img_right_depth = None |
|
if self.args.use_depth_image: |
|
while self.img_right_depth_deque[0].header.stamp.to_sec() < frame_time: |
|
self.img_right_depth_deque.popleft() |
|
img_right_depth = self.bridge.imgmsg_to_cv2(self.img_right_depth_deque.popleft(), 'passthrough') |
|
|
|
img_front_depth = None |
|
if self.args.use_depth_image: |
|
while self.img_front_depth_deque[0].header.stamp.to_sec() < frame_time: |
|
self.img_front_depth_deque.popleft() |
|
img_front_depth = self.bridge.imgmsg_to_cv2(self.img_front_depth_deque.popleft(), 'passthrough') |
|
|
|
robot_base = None |
|
if self.args.use_robot_base: |
|
while self.robot_base_deque[0].header.stamp.to_sec() < frame_time: |
|
self.robot_base_deque.popleft() |
|
robot_base = self.robot_base_deque.popleft() |
|
|
|
return (img_front, img_left, img_right, img_front_depth, img_left_depth, img_right_depth, |
|
puppet_arm_left, puppet_arm_right, robot_base) |
|
|
|
def img_left_callback(self, msg): |
|
if len(self.img_left_deque) >= 2000: |
|
self.img_left_deque.popleft() |
|
self.img_left_deque.append(msg) |
|
|
|
def img_right_callback(self, msg): |
|
if len(self.img_right_deque) >= 2000: |
|
self.img_right_deque.popleft() |
|
self.img_right_deque.append(msg) |
|
|
|
def img_front_callback(self, msg): |
|
if len(self.img_front_deque) >= 2000: |
|
self.img_front_deque.popleft() |
|
self.img_front_deque.append(msg) |
|
|
|
def img_left_depth_callback(self, msg): |
|
if len(self.img_left_depth_deque) >= 2000: |
|
self.img_left_depth_deque.popleft() |
|
self.img_left_depth_deque.append(msg) |
|
|
|
def img_right_depth_callback(self, msg): |
|
if len(self.img_right_depth_deque) >= 2000: |
|
self.img_right_depth_deque.popleft() |
|
self.img_right_depth_deque.append(msg) |
|
|
|
def img_front_depth_callback(self, msg): |
|
if len(self.img_front_depth_deque) >= 2000: |
|
self.img_front_depth_deque.popleft() |
|
self.img_front_depth_deque.append(msg) |
|
|
|
def puppet_arm_left_callback(self, msg): |
|
if len(self.puppet_arm_left_deque) >= 2000: |
|
self.puppet_arm_left_deque.popleft() |
|
self.puppet_arm_left_deque.append(msg) |
|
|
|
def puppet_arm_right_callback(self, msg): |
|
if len(self.puppet_arm_right_deque) >= 2000: |
|
self.puppet_arm_right_deque.popleft() |
|
self.puppet_arm_right_deque.append(msg) |
|
|
|
def robot_base_callback(self, msg): |
|
if len(self.robot_base_deque) >= 2000: |
|
self.robot_base_deque.popleft() |
|
self.robot_base_deque.append(msg) |
|
|
|
def init_ros(self): |
|
rospy.init_node('joint_state_publisher', anonymous=True) |
|
rospy.Subscriber(self.args.img_left_topic, Image, self.img_left_callback, queue_size=1000, tcp_nodelay=True) |
|
rospy.Subscriber(self.args.img_right_topic, Image, self.img_right_callback, queue_size=1000, tcp_nodelay=True) |
|
rospy.Subscriber(self.args.img_front_topic, Image, self.img_front_callback, queue_size=1000, tcp_nodelay=True) |
|
if self.args.use_depth_image: |
|
rospy.Subscriber(self.args.img_left_depth_topic, Image, self.img_left_depth_callback, queue_size=1000, tcp_nodelay=True) |
|
rospy.Subscriber(self.args.img_right_depth_topic, Image, self.img_right_depth_callback, queue_size=1000, tcp_nodelay=True) |
|
rospy.Subscriber(self.args.img_front_depth_topic, Image, self.img_front_depth_callback, queue_size=1000, tcp_nodelay=True) |
|
rospy.Subscriber(self.args.puppet_arm_left_topic, JointState, self.puppet_arm_left_callback, queue_size=1000, tcp_nodelay=True) |
|
rospy.Subscriber(self.args.puppet_arm_right_topic, JointState, self.puppet_arm_right_callback, queue_size=1000, tcp_nodelay=True) |
|
rospy.Subscriber(self.args.robot_base_topic, Odometry, self.robot_base_callback, queue_size=1000, tcp_nodelay=True) |
|
self.puppet_arm_left_publisher = rospy.Publisher(self.args.puppet_arm_left_cmd_topic, JointState, queue_size=10) |
|
self.puppet_arm_right_publisher = rospy.Publisher(self.args.puppet_arm_right_cmd_topic, JointState, queue_size=10) |
|
self.robot_base_publisher = rospy.Publisher(self.args.robot_base_cmd_topic, Twist, queue_size=10) |
|
|
|
|
|
def get_arguments(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--max_publish_step', action='store', type=int, |
|
help='Maximum number of action publishing steps', default=10000, required=False) |
|
parser.add_argument('--seed', action='store', type=int, |
|
help='Random seed', default=None, required=False) |
|
|
|
parser.add_argument('--img_front_topic', action='store', type=str, help='img_front_topic', |
|
default='/camera_f/color/image_raw', required=False) |
|
parser.add_argument('--img_left_topic', action='store', type=str, help='img_left_topic', |
|
default='/camera_l/color/image_raw', required=False) |
|
parser.add_argument('--img_right_topic', action='store', type=str, help='img_right_topic', |
|
default='/camera_r/color/image_raw', required=False) |
|
|
|
parser.add_argument('--img_front_depth_topic', action='store', type=str, help='img_front_depth_topic', |
|
default='/camera_f/depth/image_raw', required=False) |
|
parser.add_argument('--img_left_depth_topic', action='store', type=str, help='img_left_depth_topic', |
|
default='/camera_l/depth/image_raw', required=False) |
|
parser.add_argument('--img_right_depth_topic', action='store', type=str, help='img_right_depth_topic', |
|
default='/camera_r/depth/image_raw', required=False) |
|
|
|
parser.add_argument('--puppet_arm_left_cmd_topic', action='store', type=str, help='puppet_arm_left_cmd_topic', |
|
default='/master/joint_left', required=False) |
|
parser.add_argument('--puppet_arm_right_cmd_topic', action='store', type=str, help='puppet_arm_right_cmd_topic', |
|
default='/master/joint_right', required=False) |
|
parser.add_argument('--puppet_arm_left_topic', action='store', type=str, help='puppet_arm_left_topic', |
|
default='/puppet/joint_left', required=False) |
|
parser.add_argument('--puppet_arm_right_topic', action='store', type=str, help='puppet_arm_right_topic', |
|
default='/puppet/joint_right', required=False) |
|
|
|
parser.add_argument('--robot_base_topic', action='store', type=str, help='robot_base_topic', |
|
default='/odom_raw', required=False) |
|
parser.add_argument('--robot_base_cmd_topic', action='store', type=str, help='robot_base_topic', |
|
default='/cmd_vel', required=False) |
|
parser.add_argument('--use_robot_base', action='store_true', |
|
help='Whether to use the robot base to move around', |
|
default=False, required=False) |
|
parser.add_argument('--publish_rate', action='store', type=int, |
|
help='The rate at which to publish the actions', |
|
default=30, required=False) |
|
parser.add_argument('--ctrl_freq', action='store', type=int, |
|
help='The control frequency of the robot', |
|
default=25, required=False) |
|
|
|
parser.add_argument('--chunk_size', action='store', type=int, |
|
help='Action chunk size', |
|
default=64, required=False) |
|
parser.add_argument('--arm_steps_length', action='store', type=float, |
|
help='The maximum change allowed for each joint per timestep', |
|
default=[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.2], required=False) |
|
|
|
parser.add_argument('--use_actions_interpolation', action='store_true', |
|
help='Whether to interpolate the actions if the difference is too large', |
|
default=False, required=False) |
|
parser.add_argument('--use_depth_image', action='store_true', |
|
help='Whether to use depth images', |
|
default=False, required=False) |
|
|
|
parser.add_argument('--disable_puppet_arm', action='store_true', |
|
help='Whether to disable the puppet arm. This is useful for safely debugging',default=False) |
|
|
|
parser.add_argument('--config_path', type=str, default="configs/base.yaml", |
|
help='Path to the config file') |
|
|
|
|
|
parser.add_argument('--pretrained_model_name_or_path', type=str, required=True, help='Name or path to the pretrained model') |
|
|
|
parser.add_argument('--lang_embeddings_path', type=str, required=True, |
|
help='Path to the pre-encoded language instruction embeddings') |
|
|
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
args = get_arguments() |
|
ros_operator = RosOperator(args) |
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
config = get_config(args) |
|
model_inference(args, config, ros_operator) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|