|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import logging |
|
import math |
|
import os |
|
from pathlib import Path |
|
|
|
import diffusers |
|
import torch |
|
import torch.utils.checkpoint |
|
import transformers |
|
import yaml |
|
from accelerate import Accelerator |
|
from accelerate.utils import DeepSpeedPlugin, ProjectConfiguration, set_seed |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.utils import is_wandb_available |
|
from huggingface_hub import create_repo, upload_folder |
|
from tqdm.auto import tqdm |
|
from safetensors.torch import load_model |
|
|
|
from models.ema_model import EMAModel |
|
from models.multimodal_encoder.siglip_encoder import SiglipVisionTower |
|
from models.multimodal_encoder.t5_encoder import T5Embedder |
|
from models.rdt_runner import RDTRunner |
|
from train.dataset import DataCollatorForVLAConsumerDataset, VLAConsumerDataset |
|
from train.sample import log_sample_res |
|
|
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
def save_model_card(repo_id: str, base_model=str, repo_folder=None): |
|
yaml = f""" |
|
--- |
|
license: mit |
|
base_model: {base_model} |
|
language: |
|
- en |
|
pipeline_tag: robotics |
|
library_name: transformers |
|
tags: |
|
- robotics |
|
- pytorch |
|
- multimodal |
|
- pretraining |
|
- vla |
|
- diffusion |
|
- rdt |
|
--- |
|
""" |
|
model_card = f""" |
|
# RDT - {repo_id} |
|
|
|
This is a RDT model derived from {base_model}. The weights were trained using [RDT](https://rdt-robotics.github.io/rdt-robotics/). |
|
""" |
|
with open(os.path.join(repo_folder, "README.md"), "w") as f: |
|
f.write(yaml + model_card) |
|
|
|
|
|
def train(args, logger): |
|
|
|
with open(args.config_path, "r") as fp: |
|
config = yaml.safe_load(fp) |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit) |
|
accelerator = Accelerator( |
|
deepspeed_plugin=DeepSpeedPlugin( |
|
hf_ds_config=args.deepspeed |
|
) if args.deepspeed is not None else None, |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_dir=logging_dir, |
|
project_config=accelerator_project_config, |
|
) |
|
|
|
if args.report_to == "wandb": |
|
if not is_wandb_available(): |
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token |
|
).repo_id |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
if args.precomp_lang_embed: |
|
tokenizer, text_encoder = None, None |
|
else: |
|
text_embedder = T5Embedder(from_pretrained=args.pretrained_text_encoder_name_or_path, |
|
model_max_length=config["dataset"]["tokenizer_max_length"], device=accelerator.device) |
|
tokenizer, text_encoder = text_embedder.tokenizer, text_embedder.model |
|
|
|
vision_encoder = SiglipVisionTower(vision_tower=args.pretrained_vision_encoder_name_or_path, args=None) |
|
image_processor = vision_encoder.image_processor |
|
|
|
|
|
if ( |
|
args.pretrained_model_name_or_path is not None |
|
and not os.path.isfile(args.pretrained_model_name_or_path) |
|
): |
|
logger.info("Constructing model from pretrained checkpoint.") |
|
rdt = RDTRunner.from_pretrained(args.pretrained_model_name_or_path) |
|
else: |
|
logger.info("Constructing model from provided config.") |
|
|
|
img_cond_len = (config["common"]["img_history_size"] |
|
* config["common"]["num_cameras"] |
|
* vision_encoder.num_patches) |
|
rdt = RDTRunner( |
|
action_dim=config["common"]["state_dim"], |
|
pred_horizon=config["common"]["action_chunk_size"], |
|
config=config["model"], |
|
lang_token_dim=config["model"]["lang_token_dim"], |
|
img_token_dim=config["model"]["img_token_dim"], |
|
state_token_dim=config["model"]["state_token_dim"], |
|
max_lang_cond_len=config["dataset"]["tokenizer_max_length"], |
|
img_cond_len=img_cond_len, |
|
img_pos_embed_config=[ |
|
|
|
|
|
("image", (config["common"]["img_history_size"], |
|
config["common"]["num_cameras"], |
|
-vision_encoder.num_patches)), |
|
], |
|
lang_pos_embed_config=[ |
|
|
|
("lang", -config["dataset"]["tokenizer_max_length"]), |
|
], |
|
dtype=weight_dtype, |
|
) |
|
|
|
|
|
ema_rdt = copy.deepcopy(rdt) |
|
ema_model = EMAModel( |
|
ema_rdt, |
|
update_after_step=config["model"]["ema"]["update_after_step"], |
|
inv_gamma=config["model"]["ema"]["inv_gamma"], |
|
power=config["model"]["ema"]["power"], |
|
min_value=config["model"]["ema"]["min_value"], |
|
max_value=config["model"]["ema"]["max_value"] |
|
) |
|
|
|
|
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
for model in models: |
|
model_to_save = model.module if hasattr(model, "module") else model |
|
if isinstance(model_to_save, type(accelerator.unwrap_model(rdt))): |
|
model_to_save.save_pretrained(output_dir) |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
|
|
if args.gradient_checkpointing: |
|
|
|
raise NotImplementedError("Gradient checkpointing is not yet implemented.") |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
|
|
params_to_optimize = rdt.parameters() |
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
train_dataset = VLAConsumerDataset( |
|
config=config["dataset"], |
|
tokenizer=tokenizer, |
|
image_processor=image_processor, |
|
num_cameras=config["common"]["num_cameras"], |
|
img_history_size=config["common"]["img_history_size"], |
|
dataset_type=args.dataset_type, |
|
image_aug=args.image_aug, |
|
cond_mask_prob=args.cond_mask_prob, |
|
cam_ext_mask_prob=args.cam_ext_mask_prob, |
|
state_noise_snr=args.state_noise_snr, |
|
use_hdf5=args.load_from_hdf5, |
|
use_precomp_lang_embed=args.precomp_lang_embed, |
|
task_name=args.dataset_name, |
|
) |
|
sample_dataset = VLAConsumerDataset( |
|
config=config["dataset"], |
|
tokenizer=tokenizer, |
|
image_processor=image_processor, |
|
num_cameras=config["common"]["num_cameras"], |
|
img_history_size=config["common"]["img_history_size"], |
|
dataset_type=args.dataset_type, |
|
image_aug=False, |
|
cond_mask_prob=0, |
|
cam_ext_mask_prob=-1, |
|
state_noise_snr=None, |
|
use_hdf5=args.load_from_hdf5, |
|
use_precomp_lang_embed=args.precomp_lang_embed, |
|
task_name=args.dataset_name, |
|
) |
|
|
|
data_collator = DataCollatorForVLAConsumerDataset(tokenizer) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=args.train_batch_size, |
|
shuffle=True, |
|
collate_fn=data_collator, |
|
num_workers=args.dataloader_num_workers, |
|
pin_memory=True, |
|
persistent_workers=True |
|
) |
|
sample_dataloader = torch.utils.data.DataLoader( |
|
sample_dataset, |
|
batch_size=args.sample_batch_size, |
|
shuffle=True, |
|
collate_fn=data_collator, |
|
num_workers=args.dataloader_num_workers, |
|
pin_memory=True, |
|
persistent_workers=True |
|
) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
|
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
|
num_cycles=args.lr_num_cycles, |
|
power=args.lr_power, |
|
) |
|
|
|
|
|
rdt, optimizer, train_dataloader, sample_dataloader, lr_scheduler = accelerator.prepare( |
|
rdt, optimizer, train_dataloader, sample_dataloader, lr_scheduler |
|
) |
|
|
|
ema_rdt.to(accelerator.device, dtype=weight_dtype) |
|
|
|
if text_encoder is not None: |
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
|
|
if vision_encoder is not None: |
|
vision_encoder.vision_tower.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("roboticDiffusionTransformer", config=vars(args)) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if ( |
|
args.resume_from_checkpoint is None |
|
and args.pretrained_model_name_or_path is not None |
|
and os.path.isfile(args.pretrained_model_name_or_path) |
|
): |
|
|
|
logger.info("Loading from a pretrained checkpoint.") |
|
checkpoint = torch.load(args.pretrained_model_name_or_path) |
|
rdt.module.load_state_dict(checkpoint["module"]) |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
try: |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
except: |
|
|
|
logger.info("Resuming training state failed. Attempting to only load from model checkpoint.") |
|
checkpoint = torch.load(os.path.join(args.output_dir, path, "pytorch_model", "mp_rank_00_model_states.pt")) |
|
rdt.module.load_state_dict(checkpoint["module"]) |
|
|
|
load_model(ema_rdt, os.path.join(args.output_dir, path, "ema", "model.safetensors")) |
|
global_step = int(path.split("-")[1]) |
|
|
|
resume_global_step = global_step * args.gradient_accumulation_steps |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) |
|
|
|
|
|
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) |
|
progress_bar.set_description("Steps") |
|
|
|
loss_for_log = {} |
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
|
|
rdt.train() |
|
|
|
|
|
if args.resume_from_checkpoint and epoch == first_epoch: |
|
progress_bar.update(resume_step // args.gradient_accumulation_steps) |
|
|
|
|
|
for batch in train_dataloader: |
|
with accelerator.accumulate(rdt): |
|
images = batch["images"].to(dtype=weight_dtype) |
|
states = batch["states"].to(dtype=weight_dtype) |
|
|
|
states = states[:, -1:, :] |
|
actions = batch["actions"].to(dtype=weight_dtype) |
|
state_elem_mask = batch["state_elem_mask"].to(dtype=weight_dtype) |
|
ctrl_freqs = batch["ctrl_freqs"] |
|
|
|
with torch.no_grad(): |
|
batch_size, _, C, H, W = images.shape |
|
image_embeds = vision_encoder(images.reshape(-1, C, H, W)).detach() |
|
image_embeds = image_embeds.reshape((batch_size, -1, vision_encoder.hidden_size)) |
|
|
|
lang_attn_mask = batch["lang_attn_mask"] |
|
text_embeds = batch["lang_embeds"].to(dtype=weight_dtype) \ |
|
if args.precomp_lang_embed \ |
|
else text_encoder( |
|
input_ids=batch["input_ids"], |
|
attention_mask=lang_attn_mask |
|
)["last_hidden_state"].detach() |
|
|
|
state_elem_mask = state_elem_mask.unsqueeze(1) |
|
loss = rdt( |
|
lang_tokens=text_embeds, |
|
lang_attn_mask=lang_attn_mask, |
|
img_tokens=image_embeds, |
|
state_tokens=states, |
|
action_gt=actions, |
|
action_mask=state_elem_mask, |
|
ctrl_freqs=ctrl_freqs |
|
) |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
params_to_clip = rdt.parameters() |
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=args.set_grads_to_none) |
|
|
|
ema_model.step(accelerator.unwrap_model(rdt)) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if global_step % args.checkpointing_period == 0: |
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
ema_save_path = os.path.join(save_path, f"ema") |
|
accelerator.save_model(ema_rdt, ema_save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
if args.sample_period > 0 and global_step % args.sample_period == 0: |
|
sample_loss_for_log = log_sample_res( |
|
text_encoder, |
|
vision_encoder, |
|
rdt, |
|
args, |
|
accelerator, |
|
weight_dtype, |
|
sample_dataset.get_dataset_id2name(), |
|
sample_dataloader, |
|
logger, |
|
) |
|
logger.info(sample_loss_for_log) |
|
accelerator.log(sample_loss_for_log, step=global_step) |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
logs.update(loss_for_log) |
|
|
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
accelerator.unwrap_model(rdt).save_pretrained(args.output_dir) |
|
ema_save_path = os.path.join(args.output_dir, f"ema") |
|
accelerator.save_model(ema_rdt, ema_save_path) |
|
|
|
logger.info(f"Saved Model to {args.output_dir}") |
|
|
|
if args.push_to_hub: |
|
save_model_card( |
|
repo_id, |
|
base_model=args.pretrained_model_name_or_path, |
|
repo_folder=args.output_dir, |
|
) |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
token=args.hub_token, |
|
allow_patterns=["pytorch_model.bin", "*.json", "*.md"], |
|
|
|
) |
|
|
|
accelerator.end_training() |
|
|