import tensorflow as tf import h5py import os import fnmatch import shutil from tqdm import tqdm from multiprocessing import Pool import numpy as np def _bytes_feature(value): """Returns a bytes_list from a string / byte.""" if isinstance(value, type(tf.constant(0))): value = value.numpy() # BytesList won't unpack a string from an EagerTensor. return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _bool_feature(value): """Returns a bool_list from a boolean.""" return tf.train.Feature(int64_list=tf.train.Int64List(value=[int(value)])) def serialize_example(action, base_action, qpos, qvel, cam_high, cam_left_wrist, cam_right_wrist, instruction, terminate_episode): feature = { 'action': _bytes_feature(tf.io.serialize_tensor(action)), 'base_action': _bytes_feature(tf.io.serialize_tensor(base_action)), 'qpos': _bytes_feature(tf.io.serialize_tensor(qpos)), 'qvel': _bytes_feature(tf.io.serialize_tensor(qvel)), 'cam_high': _bytes_feature(tf.io.serialize_tensor(tf.convert_to_tensor(cam_high.tobytes(), dtype=tf.string))), 'cam_left_wrist': _bytes_feature(tf.io.serialize_tensor(tf.convert_to_tensor(cam_left_wrist.tobytes(), dtype=tf.string))), 'cam_right_wrist': _bytes_feature(tf.io.serialize_tensor(tf.convert_to_tensor(cam_right_wrist.tobytes(), dtype=tf.string))), 'instruction': _bytes_feature(instruction), 'terminate_episode': _bool_feature(terminate_episode) } example_proto = tf.train.Example(features=tf.train.Features(feature=feature)) return example_proto.SerializeToString() def process_hdf5_file(args): filepath, root_dir, out_dir = args output_dir = os.path.join(out_dir, os.path.relpath(os.path.dirname(filepath), root_dir)) os.makedirs(output_dir, exist_ok=True) filename = os.path.basename(filepath) tfrecord_path = os.path.join(output_dir, filename.replace('.hdf5', '.tfrecord')) if os.path.exists(tfrecord_path) and os.path.getsize(tfrecord_path) > 0: return f"TFRecords already exist at {tfrecord_path}" try: with h5py.File(filepath, 'r') as f, tf.io.TFRecordWriter(tfrecord_path) as writer: num_episodes = f['action'].shape[0] # Remove the first few still steps EPS = 1e-2 qpos = f['observations']['qpos'][:] # Get the idx of the first qpos whose delta exceeds the threshold qpos_delta = np.abs(qpos - qpos[0:1]) indices = np.where(np.any(qpos_delta > EPS, axis=1))[0] if len(indices) > 0: first_idx = indices[0] else: raise ValueError("Found no qpos that exceeds the threshold.") for i in range(first_idx-1, num_episodes): action = f['action'][i] base_action = f['base_action'][i] qpos = f['observations']['qpos'][i] qvel = f['observations']['qvel'][i] cam_high = f['observations']['images']['cam_high'][i] cam_left_wrist = f['observations']['images']['cam_left_wrist'][i] cam_right_wrist = f['observations']['images']['cam_right_wrist'][i] instruction = f['instruction'][()] terminate_episode = i == num_episodes - 1 serialized_example = serialize_example(action, base_action, qpos, qvel, cam_high, cam_left_wrist, cam_right_wrist, instruction, terminate_episode) writer.write(serialized_example) except Exception as e: with open("error_log.txt", "a") as f: f.write(f"{filepath}\n") print(f"error at {filepath}: {e}") return f"TFRecords written to {tfrecord_path}" def write_tfrecords(root_dir, out_dir): if not os.path.exists(out_dir): os.makedirs(out_dir) hdf5_files = [] for root, dirs, files in os.walk(root_dir): if os.path.exists(os.path.join(root,"expanded_instruction_gpt-4-turbo.json")): # copy the instruction file target_path = os.path.join(out_dir, os.path.relpath(root, root_dir)) os.makedirs(target_path, exist_ok=True) shutil.copy(os.path.join(root,"expanded_instruction_gpt-4-turbo.json"), target_path) elif os.path.exists(os.path.join(root,"expanded_instruction.json")): print(root) target_path = os.path.join(out_dir, os.path.relpath(root, root_dir)) os.makedirs(target_path, exist_ok=True) shutil.copy(os.path.join(root,"expanded_instruction.json"), target_path) # rename into expanded_instruction_gpt-4-turbo.json os.rename(os.path.join(out_dir, os.path.relpath(root, root_dir), "expanded_instruction.json"), os.path.join(out_dir, os.path.relpath(root, root_dir), "expanded_instruction_gpt-4-turbo.json")) for filename in fnmatch.filter(files, '*.hdf5'): filepath = os.path.join(root, filename) hdf5_files.append((filepath, root_dir, out_dir)) with Pool(16) as pool: max_count = len(hdf5_files) with tqdm(total=max_count) as pbar: for _ in pool.imap_unordered(process_hdf5_file, hdf5_files): pbar.update(1) print(f"TFRecords written to {out_dir}") root_dir = "../datasets/agilex/rdt_data/" out_dir = "../datasets/agilex/tfrecords/" write_tfrecords(root_dir, out_dir)