import tensorflow as tf from data.utils import clean_task_instruction, euler_to_quaternion, \ quaternion_to_rotation_matrix, rotation_matrix_to_ortho6d def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: """ Convert terminate action to a boolean, where True means terminate. """ return tf.where(tf.equal(terminate_act, tf.constant(0.0, dtype=tf.float32)),tf.constant(False),tf.constant(True)) def process_step(step: dict) -> dict: """ Unify the action format and clean the task instruction. DO NOT use python list, use tf.TensorArray instead. """ # Convert raw action to our action action = step['action'] action['terminate'] = terminate_act_to_bool(action['terminate_episode']) eef_delta_pos = action['world_vector'] eef_ang = action['rotation_delta'] eef_ang = euler_to_quaternion(eef_ang) # Ignore action['gripper_open']: 1 if close gripper, -1 if open gripper, 0 if no change. # No base found # Concatenate the action arm_action = tf.concat([eef_delta_pos, eef_ang], axis=0) action['arm_concat'] = arm_action # Write the action format action['format'] = tf.constant( "eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z,eef_delta_angle_x,eef_delta_angle_y,eef_delta_angle_z,eef_delta_angle_w") # Convert raw state to our state state = step['observation'] # state['robot_state']:[joint0, joint1, joint2, joint3, joint4, joint5, x,y,z, qx,qy,qz,qw, gripper_is_closed, action_blocked] robot_state = state['robot_state'] joint_pos=robot_state[:6] eef_pos = robot_state[6:9] eef_quat = robot_state[9:13] eef_ang = quaternion_to_rotation_matrix(eef_quat) eef_ang = rotation_matrix_to_ortho6d(eef_ang) # gripper_is_closed is binary: 0 = fully open; 1 = fully closed grip_closed = robot_state[13:14] grip_open= 1-grip_closed # action_blocked is binary: 0 = not blocked; 1 = blocked # action_blocked = robot_state[14:15] # Concatenate the state state['arm_concat'] = tf.concat([joint_pos, grip_open,eef_pos,eef_ang], axis=0) # Write the state format state['format'] = tf.constant( "arm_joint_0_pos,arm_joint_1_pos,arm_joint_2_pos,arm_joint_3_pos,arm_joint_4_pos,arm_joint_5_pos,gripper_open,eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5") # Clean the task instruction # Define the replacements (old, new) as a dictionary replacements = { '_': ' ', '1f': ' ', '4f': ' ', '-': ' ', '50': ' ', '55': ' ', '56': ' ', } instr = step['observation']['natural_language_instruction'] instr = clean_task_instruction(instr, replacements) step['observation']['natural_language_instruction'] = instr return step if __name__ == "__main__": import tensorflow_datasets as tfds from data.utils import dataset_to_path DATASET_DIR = 'data/datasets/openx_embod' DATASET_NAME = 'berkeley_autolab_ur5' # Load the dataset dataset = tfds.builder_from_directory( builder_dir=dataset_to_path( DATASET_NAME, DATASET_DIR)) dataset = dataset.as_dataset(split='all') # Inspect the dataset for episode in dataset: for step in episode['steps']: print(step)