import tensorflow as tf from data.utils import clean_task_instruction, quaternion_to_rotation_matrix, rotation_matrix_to_ortho6d def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: """ Convert terminate action to a boolean, where True means terminate. """ return tf.equal(terminate_act, tf.constant(1.0, dtype=tf.float32)) def process_step(step: dict) -> dict: """ Unify the action format and clean the task instruction. DO NOT use python list, use tf.TensorArray instead. """ # Convert raw action to our action action = step['action'] action['terminate'] = terminate_act_to_bool(action['terminate_episode']) eef_delta_pos = action['world_vector'] eef_ang=action['rotation_delta'] # No gripper_open found # No base found # Concatenate the action arm_action=tf.concat([eef_delta_pos,eef_ang],axis=0) action['arm_concat']=arm_action #base_action = tf.concat([base_pos, base_ang], axis=0) #action['base_concat'] = base_action # Write the action format action['format']=tf.constant("eef_vel_x,eef_vel_y,eef_vel_z,eef_angular_vel_roll,eef_angular_vel_pitch,eef_angular_vel_yaw") # Convert raw state to our state state = step['observation'] eef_pos = state['robot_state'][:3] eef_ang = quaternion_to_rotation_matrix(state['robot_state'][3:]) eef_ang = rotation_matrix_to_ortho6d(eef_ang) # Concatenate the state state['arm_concat']=tf.concat([eef_pos,eef_ang],axis=0) # Write the state format state['format'] = tf.constant( "eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5") # Define the task instruction step['observation']['natural_language_instruction'] = tf.constant( "Route cable through the tight-fitting clip mounted on the table.") return step if __name__ == "__main__": import tensorflow_datasets as tfds from data.utils import dataset_to_path DATASET_DIR = 'data/datasets/openx_embod/' DATASET_NAME = 'berkeley_cable_routing' # Load the dataset dataset = tfds.builder_from_directory( builder_dir=dataset_to_path( DATASET_NAME, DATASET_DIR)) dataset = dataset.as_dataset(split='all') # Inspect the dataset for episode in dataset: for step in episode['steps']: print(step)