import tensorflow as tf from data.utils import clean_task_instruction, euler_to_quaternion, \ quaternion_to_rotation_matrix, rotation_matrix_to_ortho6d def process_step(step: dict) -> dict: """ Unify the action format and clean the task instruction. DO NOT use python list, use tf.TensorArray instead. """ # Convert raw action to our action origin_action = step['action'] step['action']={} action=step['action'] action['terminate'] = step['is_terminal'] # 6x end effector delta pose, 1x gripper position eef_delta_pos = origin_action[:3] eef_ang=origin_action[3:6] eef_ang = euler_to_quaternion(eef_ang) # No base found # Concatenate the action action['arm_concat'] = tf.concat([eef_delta_pos,eef_ang],axis=0) # Write the action format action['format'] = tf.constant( "eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z,eef_delta_angle_x,eef_delta_angle_y,eef_delta_angle_z,eef_delta_angle_w") # Convert raw state to our state state = step['observation'] # Concatenate the state # [6x robot joint angles, 1x gripper open status, 6x robot joint velocities]. arm_joint_ang=state['state'][:6] grip_open=1-state['state'][6:7] # arm_joint_vel=state['state'][7:13] # all zeros eef_pos = state['end_effector_state'][:3] eef_ang = quaternion_to_rotation_matrix(state['end_effector_state'][3:]) eef_ang = rotation_matrix_to_ortho6d(eef_ang) state['arm_concat'] = tf.concat([arm_joint_ang,grip_open,eef_pos,eef_ang],axis=0) # Write the state format state['format'] = tf.constant( "arm_joint_0_pos,arm_joint_1_pos,arm_joint_2_pos,arm_joint_3_pos,arm_joint_4_pos,arm_joint_5_pos,gripper_open,eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5") # Clean the task instruction # Define the replacements (old, new) as a dictionary replacements = { '_': ' ', '1f': ' ', '4f': ' ', '-': ' ', '50': ' ', '55': ' ', '56': ' ', } instr = step['language_instruction'] instr = clean_task_instruction(instr, replacements) step['observation']['natural_language_instruction'] = instr return step if __name__ == "__main__": import tensorflow_datasets as tfds from data.utils import dataset_to_path DATASET_DIR = 'data/datasets/openx_embod' DATASET_NAME = 'berkeley_fanuc_manipulation' # Load the dataset dataset = tfds.builder_from_directory( builder_dir=dataset_to_path( DATASET_NAME, DATASET_DIR)) dataset = dataset.as_dataset(split='all') # Inspect the dataset for episode in dataset: for step in episode['steps']: print(step)