import tensorflow as tf from data.utils import clean_task_instruction, euler_to_quaternion, euler_to_rotation_matrix, \ rotation_matrix_to_ortho6d def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: """ Convert terminate action to a boolean, where True means terminate. """ return tf.equal(terminate_act, tf.constant(1.0, dtype=tf.float32)) def process_step(step: dict) -> dict: """ Unify the action format and clean the task instruction. DO NOT use python list, use tf.TensorArray instead. """ # Convert raw action to our action action = step['action'] action['terminate'] = terminate_act_to_bool(action['terminate_episode']) eef_delta_pos = action['world_vector'] eef_ang=action['rotation_delta'] eef_ang = euler_to_quaternion(eef_ang) grip_open=tf.reshape(tf.where(action['open_gripper'],1.0, 0.0),(1,)) # grip_open:tensor # No base found # Concatenate the action arm_action=tf.concat([eef_delta_pos,eef_ang,grip_open],axis=0) action['arm_concat']=arm_action #base_action = tf.concat([base_delta_pos, base_delta_ang], axis=0) #action['base_concat'] = base_action # Write the action format action['format']=tf.constant("eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z,eef_delta_angle_x,eef_delta_angle_y,eef_delta_angle_z,eef_delta_angle_w,gripper_open") # Convert raw state to our state state= step['observation'] eef_pos=state['state'][:3] eef_ang=state['state'][3:6] eef_ang = euler_to_rotation_matrix(eef_ang) eef_ang = rotation_matrix_to_ortho6d(eef_ang) gripper_action=state['state'][6:] # Concatenate the state state['arm_concat']=tf.concat([eef_pos,eef_ang,gripper_action],axis=0) # Write the state format state['format'] = tf.constant( "eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5,gripper_open") # Clean the task instruction # Define the replacements (old, new) as a dictionary replacements = { '_': ' ', '1f': ' ', '4f': ' ', '-': ' ', '50': ' ', '55': ' ', '56': ' ', } instr = step['observation']['natural_language_instruction'] instr = clean_task_instruction(instr, replacements) step['observation']['natural_language_instruction'] = instr return step if __name__ == "__main__": import tensorflow_datasets as tfds from data.utils import dataset_to_path DATASET_DIR = 'data/datasets/openx_embod/' DATASET_NAME = 'bridge' # Load the dataset dataset = tfds.builder_from_directory( builder_dir=dataset_to_path( DATASET_NAME, DATASET_DIR)) dataset = dataset.as_dataset(split='all') # Inspect the dataset for episode in dataset: for step in episode['steps']: print(step)