import tensorflow as tf import tensorflow_datasets as tfds from data.utils import clean_task_instruction, quaternion_to_euler, euler_to_quaternion, euler_to_rotation_matrix, rotation_matrix_to_ortho6d import tensorflow as tf import h5py import numpy as np from tqdm import tqdm import os import imageio import concurrent.futures import fnmatch import random def _parse_function(proto): keys_to_features = { 'observations/images0': tf.io.FixedLenFeature([], tf.string), 'observations/state': tf.io.FixedLenFeature([], tf.string), 'observations/qpos': tf.io.FixedLenFeature([], tf.string), 'observations/eef_transform': tf.io.FixedLenFeature([], tf.string), 'language': tf.io.FixedLenFeature([], tf.string), 'actions': tf.io.FixedLenFeature([], tf.string), 'truncates': tf.io.FixedLenFeature([], tf.int64), } parsed_features = tf.io.parse_single_example(proto, keys_to_features) observations_images0 = tf.io.parse_tensor(parsed_features['observations/images0'], out_type=tf.uint8) observations_state = tf.io.parse_tensor(parsed_features['observations/state'], out_type=tf.float32) observations_qpos = tf.io.parse_tensor(parsed_features['observations/qpos'], out_type=tf.float32) # observations_eef_transform = tf.io.parse_tensor(parsed_features['observations/eef_transform'], out_type=tf.float32) language = parsed_features['language'] actions = tf.io.parse_tensor(parsed_features['actions'], out_type=tf.float32) truncates = parsed_features['truncates'] actions = tf.reshape(actions, [7]) observations_images0 = tf.reshape(observations_images0, [480, 640, 3]) # observations_eef_transform = tf.reshape(observations_eef_transform, [4,4]) # observations_eef_transform = extract_angles_and_translation(observations_eef_transform) # observations_eef_transform = tf.reshape(observations_eef_transform, [6]) observations_qpos = tf.reshape(observations_qpos, [6]) observations_state = tf.reshape(observations_state, [7]) return { 'observation': { 'images0': observations_images0, 'state': observations_state, 'qpos': observations_qpos, }, 'language': language, 'actions': actions, 'truncates': truncates } def dataset_generator_from_tfrecords(seed): tfrecord_path = './data/datasets/bridgev2/tfrecords' filepaths = [] for root, dirs, files in os.walk(tfrecord_path): for filename in fnmatch.filter(files, '*.tfrecord'): filepath = os.path.join(root, filename) filepaths.append(filepath) random.seed(seed) random.shuffle(filepaths) for filepath in filepaths: raw_dataset = tf.data.TFRecordDataset(filepath) dataset = raw_dataset.map(_parse_function) yield { 'steps': dataset } def load_dataset(seed): dataset = tf.data.Dataset.from_generator( lambda: dataset_generator_from_tfrecords(seed), output_signature={ 'steps': tf.data.DatasetSpec( element_spec={ 'observation': { 'images0': tf.TensorSpec(shape=(480, 640, 3), dtype=tf.uint8), 'state': tf.TensorSpec(shape=(7,), dtype=tf.float32), 'qpos': tf.TensorSpec(shape=(6,), dtype=tf.float32), }, 'language': tf.TensorSpec(shape=(), dtype=tf.string), 'actions': tf.TensorSpec(shape=(7,), dtype=tf.float32), 'truncates': tf.TensorSpec(shape=(), dtype=tf.int64) } ) } ) return dataset def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: """ Convert terminate action to a boolean, where True means terminate. """ return tf.where(tf.equal(terminate_act, tf.constant(0.0, dtype=tf.float32)),tf.constant(False),tf.constant(True)) def process_step(step: dict) -> dict: """ Unify the action format and clean the task instruction. DO NOT use python list, use tf.TensorArray instead. """ # Convert raw action to our action old_action = step['actions'] step['action'] = {} action = step['action'] step['action']['terminate'] = step['truncates'] # https://github.com/rail-berkeley/bridge_data_robot/blob/main/widowx_envs/widowx_envs/utils/transformation_utils.py line 154 eef_delta_pos = old_action[:3] eef_ang = old_action[3:6] eef_ang = euler_to_quaternion(eef_ang) gripper_state = old_action[6] # https://github.com/rail-berkeley/bridge_data_robot/blob/main/widowx_envs/widowx_envs/base/robot_base_env.py line 231 # gripper_open = tf.constant(0.0,dtype=tf.float32) if gripper_state < 0.5 else tf.constant(1.0,dtype=tf.float32) gripper_open = tf.cond(tf.less(gripper_state, 0.5), lambda: tf.constant(0.0, dtype=tf.float32), lambda: tf.constant(1.0, dtype=tf.float32)) gripper_open = tf.expand_dims(gripper_open,axis=0) # # No base found # # Concatenate the action arm_action = tf.concat([eef_delta_pos, eef_ang,gripper_open], axis=0) action['arm_concat'] = arm_action # # Write the action format action['format'] = tf.constant( "eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z, eef_delta_angle_x, eef_delta_angle_y, eef_delta_angle_z, eef_delta_angle_w, gripper_open") old_state = step['observation']['state'] qpos = step['observation']['qpos'] state = step['observation'] # https://github.com/rail-berkeley/bridge_data_robot/blob/main/widowx_envs/widowx_envs/base/robot_base_env.py line 292 eef_pos = old_state[:3] eef_ang = old_state[3:6] eef_ang = euler_to_rotation_matrix(eef_ang) eef_ang = rotation_matrix_to_ortho6d(eef_ang) gripper_open = old_state[6:] # gripper_open = tf.cond(tf.less(gripper_state, 0.5), lambda: tf.constant(0.0, dtype=tf.float32), lambda: tf.constant(1.0, dtype=tf.float32)) # gripper_open = tf.expand_dims(gripper_open,axis=0) state['arm_concat'] = tf.concat([qpos,gripper_open,eef_pos,eef_ang], axis=0) # # Write the state format state['format'] = tf.constant( "arm_joint_0_pos,arm_joint_1_pos,arm_joint_2_pos,arm_joint_3_pos,arm_joint_4_pos,arm_joint_5_pos,gripper_joint_0_pos,eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5") # Clean the task instruction # Define the replacements (old, new) as a dictionary replacements = { '_': ' ', '1f': ' ', '4f': ' ', '-': ' ', '50': ' ', '55': ' ', '56': ' ', } # copied from openxembod instr = step['language'] instr = clean_task_instruction(instr, replacements) step['observation']['natural_language_instruction'] = instr return step if __name__ == "__main__": import tensorflow_datasets as tfds from data.utils import dataset_to_path # Load the dataset dataset = load_dataset(0) for episode in dataset.take(1): for step in episode['steps']: step = process_step(step) print(step) break