import tensorflow as tf from data.utils import clean_task_instruction, quaternion_to_euler def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: """ Convert terminate action to a boolean, where True means terminate. """ return tf.where(tf.equal(terminate_act, tf.constant(0.0, dtype=tf.float32)),tf.constant(False),tf.constant(True)) def process_step(step: dict) -> dict: """ Unify the action format and clean the task instruction. DO NOT use python list, use tf.TensorArray instead. """ # Convert raw action to our action origin_action = step['action'] step['action']={} action=step['action'] action['terminate']=terminate_act_to_bool(origin_action[8]) eef_pos=origin_action[:3] # eef_ang=quaternion_to_euler(origin_action[3:7]) eef_ang = origin_action[3:7] grip_open=origin_action[7:8] # No base found # Concatenate the action action['arm_concat'] = tf.concat([eef_pos,eef_ang,grip_open],axis=0) # Write the action format action['format'] = tf.constant( "eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z,eef_delta_angle_x,eef_delta_angle_y,eef_delta_angle_z,eef_delta_angle_w,gripper_open") # Convert raw state to our state state = step['observation'] # Concatenate the state arm_joint_ang=state['state'][:7] grip_open=state['state'][7:8] * 11.765 # rescale to [0, 1] state['arm_concat'] = tf.concat([arm_joint_ang,grip_open],axis=0) # Write the state format state['format'] = tf.constant( "arm_joint_0_pos,arm_joint_1_pos,arm_joint_2_pos,arm_joint_3_pos,arm_joint_4_pos,arm_joint_5_pos,arm_joint_6_pos,gripper_joint_0_pos") # Clean the task instruction # Define the replacements (old, new) as a dictionary replacements = { '_': ' ', '1f': ' ', '4f': ' ', '-': ' ', '50': ' ', '55': ' ', '56': ' ', } instr = step['language_instruction'] instr = clean_task_instruction(instr, replacements) step['observation']['natural_language_instruction'] = instr return step if __name__ == "__main__": import tensorflow_datasets as tfds from data.utils import dataset_to_path DATASET_DIR = 'data/datasets/openx_embod' DATASET_NAME = 'cmu_play_fusion' # Load the dataset dataset = tfds.builder_from_directory( builder_dir=dataset_to_path( DATASET_NAME, DATASET_DIR)) dataset = dataset.as_dataset(split='all') # Inspect the dataset for episode in dataset: for step in episode['steps']: print(step['action'][6:7])