import tensorflow as tf from data.utils import clean_task_instruction, quaternion_to_rotation_matrix, \ rotation_matrix_to_ortho6d def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: """ Convert terminate action to a boolean, where True means terminate. """ return tf.reduce_all(tf.equal(terminate_act, tf.constant([1, 0, 0], dtype=tf.int32))) def process_step(step: dict) -> dict: """ Unify the action format and clean the task instruction. DO NOT use python list, use tf.TensorArray instead. """ # Convert raw action to our action action = step['action'] action['terminate'] = terminate_act_to_bool(action['terminate_episode']) eef_delta_pos = action['world_vector'] # eef_ang = action['rotation_delta'] # (NOTE) due to the formality problem, grip_open is not used # grip_open = 1 - (action['gripper_closedness_action'] ) / 2 # base_delta_pos = action['base_displacement_vector'] # base_delta_ang = action['base_displacement_vertical_rotation'] # Concatenate the action arm_action = eef_delta_pos action['arm_concat'] = arm_action # base_action = tf.constant([0, 0, 0, 0], dtype=tf.float32) # action['base_concat'] = None # Write the action format action['format'] = tf.constant( "eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z") # Convert raw state to our state state = step['observation'] joint_pos = state['joint_pos'] eef_pos = state['end_effector_cartesian_pos'][:3] eef_quat = state['end_effector_cartesian_pos'][3:] eef_ang = quaternion_to_rotation_matrix(eef_quat) eef_ang = rotation_matrix_to_ortho6d(eef_ang) eef_vel = state['end_effector_cartesian_velocity'][:3] # We do not use angular velocity since it is very inaccurate in this environment # eef_angular_vel = state['end_effector_cartesian_velocity'][3:] # Concatenate the state state['arm_concat'] = tf.concat([joint_pos, eef_pos, eef_ang, eef_vel], axis=0) # Write the state format state['format'] = tf.constant( "arm_joint_0_pos,arm_joint_1_pos,arm_joint_2_pos,arm_joint_3_pos,arm_joint_4_pos,arm_joint_5_pos,gripper_joint_0_pos,gripper_joint_1_pos,eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5,eef_vel_x,eef_vel_y,eef_vel_z") # Clean the task instruction # Define the replacements (old, new) as a dictionary replacements = { '_': ' ', '1f': ' ', '4f': ' ', '-': ' ', '50': ' ', '55': ' ', '56': ' ', } instr = step['observation']['natural_language_instruction'] instr = clean_task_instruction(instr, replacements) step['observation']['natural_language_instruction'] = instr return step if __name__ == "__main__": import tensorflow_datasets as tfds from data.utils import dataset_to_path DATASET_DIR = 'data/datasets/openx_embod' DATASET_NAME = 'jaco_play' # Load the dataset dataset = tfds.builder_from_directory( builder_dir=dataset_to_path( DATASET_NAME, DATASET_DIR)) dataset = dataset.as_dataset(split='all') # Inspect the dataset for episode in dataset: for step in episode['steps']: print(step)