import tensorflow as tf from data.utils import clean_task_instruction, euler_to_quaternion, quaternion_to_rotation_matrix,\ rotation_matrix_to_ortho6d def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: """ Convert terminate action to a boolean, where True means terminate. """ return tf.reduce_all(tf.equal(terminate_act, tf.constant([1, 0, 0], dtype=tf.int32))) def process_step(step: dict) -> dict: """ Unify the action format and clean the task instruction. DO NOT use python list, use tf.TensorArray instead. """ # Convert raw action to our action action = step['action'] # Robot action, consists of [3x end-effector position residual, 3x end-effector axis-angle residual, # 7x robot joint k_p gain coefficient, 7x robot joint damping ratio coefficient]. # The action residuals are global, i.e. multiplied on theleft-hand side of the current end-effector state. eef_delta_pos = action[:3] eef_ang = action[3:6] eef_ang = euler_to_quaternion(eef_ang) # Concatenate the action step['action'] = {} action = step['action'] action['terminate'] = step['is_terminal'] action['arm_concat'] = tf.concat([eef_delta_pos, eef_ang,], axis=0) # Write the action format action['format'] = tf.constant( "eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z,eef_delta_angle_x,eef_delta_angle_y,eef_delta_angle_z,eef_delta_angle_w") # Convert raw state to our state state = step['observation'] # Robot state, consists of [joint_states, end_effector_pose].Joint states are 14-dimensional, formatted in the order of [q_0, w_0, q_1, w_0, ...]. # In other words, joint positions and velocities are interleaved.The end-effector pose is 7-dimensional, formatted in the order of [position, quaternion].The quaternion is formatted in (x,y,z,w) order. The end-effector pose references the tool frame, in the center of the two fingers of the gripper. joint_states = state['state'][:14] arm_joint_pos = joint_states[::2] arm_joint_vel = joint_states[1::2] eef_pos = state['state'][14:17] # eef_ang = quaternion_to_euler(state['state'][17:21]) eef_ang = quaternion_to_rotation_matrix(state['state'][17:21]) eef_ang = rotation_matrix_to_ortho6d(eef_ang) # Concatenate the state state['arm_concat'] = tf.concat([arm_joint_pos, arm_joint_vel, eef_pos, eef_ang], axis=0) # Write the state format state['format'] = tf.constant( "arm_joint_0_pos,arm_joint_1_pos,arm_joint_2_pos,arm_joint_3_pos,arm_joint_4_pos,arm_joint_5_pos,arm_joint_6_pos,arm_joint_0_vel,arm_joint_1_vel,arm_joint_2_vel,arm_joint_3_vel,arm_joint_4_vel,arm_joint_5_vel,arm_joint_6_vel,eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5") # Clean the task instruction # Define the replacements (old, new) as a dictionary replacements = { '_': ' ', '1f': ' ', '4f': ' ', '-': ' ', '50': ' ', '55': ' ', '56': ' ', } instr = step['language_instruction'] instr = clean_task_instruction(instr, replacements) step['observation']['natural_language_instruction'] = instr return step if __name__ == "__main__": import tensorflow_datasets as tfds from data.utils import dataset_to_path DATASET_DIR = 'data/datasets/openx_embod' DATASET_NAME = 'fractal20220817_data' # Load the dataset dataset = tfds.builder_from_directory( builder_dir=dataset_to_path( DATASET_NAME, DATASET_DIR)) dataset = dataset.as_dataset(split='all') # Inspect the dataset for episode in dataset: for step in episode['steps']: print(step)