import tensorflow as tf from data.utils import clean_task_instruction, euler_to_quaternion, quaternion_to_rotation_matrix,\ rotation_matrix_to_ortho6d def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: """ Convert terminate action to a boolean, where True means terminate. """ return tf.reduce_all(tf.equal(terminate_act, tf.constant([1, 0, 0], dtype=tf.int32))) def process_step(step: dict) -> dict: """ Unify the action format and clean the task instruction. DO NOT use python list, use tf.TensorArray instead. """ # keys_view = step.keys() # print("step") # print(list(keys_view)) # Convert raw action to our action action: dict = step['action'] # print("action") # print(list(action.keys())) action['terminate'] = terminate_act_to_bool(action['terminate_episode']) eef_delta_pos = action['world_vector'] eef_ang = action['rotation_delta'] eef_ang = euler_to_quaternion(eef_ang) grip_open = 1 - (action['gripper_closedness_action'] + 1) / 2 base_delta_pos = action['base_displacement_vector'] base_delta_ang = action['base_displacement_vertical_rotation'] # Concatenate the action arm_action = tf.concat([eef_delta_pos, eef_ang, grip_open], axis=0) action['arm_concat'] = arm_action base_action = tf.concat([base_delta_pos, base_delta_ang], axis=0) action['base_concat'] = base_action # print("action len:", len(action['arm_concat']) + len(action['base_concat'])) # Write the action format action['format'] = tf.constant( "eef_delta_pos_x,eef_delta_pos_y,eef_delta_pos_z,eef_delta_angle_x,eef_delta_angle_y,eef_delta_angle_z,eef_delta_angle_w,gripper_open,base_vel_x,base_vel_y,base_angular_vel") # action good for kuka same as example # Convert raw state to our state state = step['observation'] # print("state") # print(list(state.keys())) eef_pos = state['clip_function_input/base_pose_tool_reached'][:3] eef_ang = quaternion_to_rotation_matrix(state['clip_function_input/base_pose_tool_reached'][3:]) eef_ang = rotation_matrix_to_ortho6d(eef_ang) grip_open = 1 - state['gripper_closed'] # Concatenate the state state['arm_concat'] = tf.concat([eef_pos, eef_ang, grip_open], axis=0) # print("state len:", len(state['arm_concat'])) # Write the state format state['format'] = tf.constant( "eef_pos_x,eef_pos_y,eef_pos_z,eef_angle_0,eef_angle_1,eef_angle_2,eef_angle_3,eef_angle_4,eef_angle_5,gripper_open") # Clean the task instruction # Define the replacements (old, new) as a dictionary replacements = { '_': ' ', '1f': ' ', '4f': ' ', '-': ' ', '50': ' ', '55': ' ', '56': ' ', } instr = step['observation']['natural_language_instruction'] instr = clean_task_instruction(instr, replacements) step['observation']['natural_language_instruction'] = instr return step if __name__ == "__main__": import tensorflow_datasets as tfds from data.utils import dataset_to_path DATASET_DIR = 'data/datasets/openx_embod' DATASET_NAME = 'kuka' # Load the dataset dataset = tfds.builder_from_directory( builder_dir=dataset_to_path( DATASET_NAME, DATASET_DIR)) dataset = dataset.as_dataset(split='all') # with open('example.txt', 'w') as file: # Inspect the dataset episode_num = len(dataset) for episode in dataset: # print("episode") # print(list(episode.keys())) for step in episode['steps']: process_step(step) # break print(f"episode_num: {episode_num}")