import tensorflow as tf from data.utils import clean_task_instruction def process_step(step: dict) -> dict: """ Unify the action format and clean the task instruction. DO NOT use python list, use tf.TensorArray instead. """ # Convert raw action to our action origin_action = step['action'] step['action']={} action=step['action'] eef_delta_pos=origin_action # No base found # Concatenate the action action['arm_concat'] = eef_delta_pos action['terminate'] = step['is_terminal'] # Write the action format action['format'] = tf.constant( "eef_delta_pos_x,eef_delta_pos_y") # Convert raw state to our state state = step['observation'] # Concatenate the state eef_pos=state['effector_translation'] state['arm_concat'] = eef_pos # Write the state format state['format'] = tf.constant( "eef_pos_x,eef_pos_y") # Clean the task instruction # Define the replacements (old, new) as a dictionary replacements = { '_': ' ', '1f': ' ', '4f': ' ', '-': ' ', '50': ' ', '55': ' ', '56': ' ', } instr = step['observation']['instruction'] # Convert bytes to tf.string instr = tf.strings.unicode_encode(instr, 'UTF-8') # Remove '\x00' instr = tf.strings.regex_replace(instr, '\x00', '') instr = clean_task_instruction(instr, replacements) step['observation']['natural_language_instruction'] = instr return step if __name__ == "__main__": import tensorflow_datasets as tfds from data.utils import dataset_to_path DATASET_DIR = 'data/datasets/openx_embod' DATASET_NAME = 'language_table' # Load the dataset dataset = tfds.builder_from_directory( builder_dir=dataset_to_path( DATASET_NAME, DATASET_DIR)) dataset = dataset.as_dataset(split='all') # Inspect the dataset for episode in dataset: for step in episode['steps']: print(step)