import tensorflow as tf from data.utils import clean_task_instruction, euler_to_quaternion def terminate_act_to_bool(terminate_act: tf.Tensor) -> tf.Tensor: """ Convert terminate action to a boolean, where True means terminate. """ return tf.equal(terminate_act, tf.constant(1.0, dtype=tf.float32)) def process_step(step: dict) -> dict: """ Unify the action format and clean the task instruction. DO NOT use python list, use tf.TensorArray instead. """ # Convert raw action to our action action = step['action'] action['terminate'] = terminate_act_to_bool(action['terminate_episode']) # Multiplied by 3 Hz to get units m/s and rad/s eef_delta_pos = action['world_vector'] * 3 eef_ang = action['rotation_delta'] * 3 # Origin: [-0.28, 0.96]: open, close # 1-Origin: [0.04, 1.28]: close, open grip_open = 1 - action['gripper_closedness_action'] # base_delta_pos = action['base_displacement_vector'] # base_delta_ang = action['base_displacement_vertical_rotation'] # Concatenate the action arm_action = tf.concat([eef_delta_pos, eef_ang, grip_open], axis=0) action['arm_concat'] = arm_action # base_action = tf.concat([base_delta_pos, base_delta_ang], axis=0) # action['base_concat'] = base_action # Write the action format action['format'] = tf.constant( "eef_vel_x,eef_vel_y,eef_vel_z,eef_angular_vel_roll,eef_angular_vel_pitch,eef_angular_vel_yaw,gripper_open") # Convert raw state to our state # state = step['observation'] # eef_pos = state['base_pose_tool_reached'][:3] # eef_ang = quaternion_to_euler(state['base_pose_tool_reached'][3:]) # grip_open = 1 - state['gripper_closed'] # create empty tensor # state['arm_concat'] = tf.constant([0, 0, 0, 0, 0, 0], dtype=tf.float32) # Write the state format # state['format'] = tf.constant( # "") # Define the task instruction step['observation']['natural_language_instruction'] = tf.constant( "Open the cabinet door.") return step if __name__ == "__main__": import tensorflow_datasets as tfds from data.utils import dataset_to_path DATASET_DIR = 'data/datasets/openx_embod' DATASET_NAME = 'nyu_door_opening_surprising_effectiveness' # Load the dataset dataset = tfds.builder_from_directory( builder_dir=dataset_to_path( DATASET_NAME, DATASET_DIR)) dataset = dataset.as_dataset(split='all') # Inspect the dataset for episode in dataset.take(1): for step in episode['steps']: print(step)