# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # DiT: https://github.com/facebookresearch/DiT # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- import math from collections import OrderedDict import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.jit import Final from timm.models.vision_transformer import Attention, Mlp, RmsNorm, use_fused_attn ################################################################################# # Embedding Layers for Timesteps and Condition Inptus # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256, dtype=torch.bfloat16): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size self.dtype = dtype def timestep_embedding(self, t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange( start=0, end=half, dtype=torch.float32, device=t.device) / half ) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding.to(self.dtype) def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb ################################################################################# # Cross Attention Layers # ################################################################################# class CrossAttention(nn.Module): """ A cross-attention layer with flash attention. """ fused_attn: Final[bool] def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_norm: bool = False, attn_drop: float = 0, proj_drop: float = 0, norm_layer: nn.Module = nn.LayerNorm, ) -> None: super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.fused_attn = use_fused_attn() self.q = nn.Linear(dim, dim, bias=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x: torch.Tensor, c: torch.Tensor, mask: torch.Tensor | None = None) -> torch.Tensor: B, N, C = x.shape _, L, _ = c.shape q = self.q(x).reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3) kv = self.kv(c).reshape(B, L, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) k, v = kv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) # Prepare attn mask (B, L) to mask the conditioion if mask is not None: mask = mask.reshape(B, 1, 1, L) mask = mask.expand(-1, -1, N, -1) if self.fused_attn: x = F.scaled_dot_product_attention( query=q, key=k, value=v, dropout_p=self.attn_drop.p if self.training else 0., attn_mask=mask ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) if mask is not None: attn = attn.masked_fill_(mask.logical_not(), float('-inf')) attn = attn.softmax(dim=-1) if self.attn_drop.p > 0: attn = self.attn_drop(attn) x = attn @ v x = x.permute(0, 2, 1, 3).reshape(B, N, C) x = self.proj(x) if self.proj_drop.p > 0: x = self.proj_drop(x) return x ################################################################################# # RDT Block # ################################################################################# class RDTBlock(nn.Module): """ A RDT block with cross-attention conditioning. """ def __init__(self, hidden_size, num_heads, **block_kwargs): super().__init__() self.norm1 = RmsNorm(hidden_size, eps=1e-6) self.attn = Attention( dim=hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=True, norm_layer=RmsNorm,**block_kwargs) self.cross_attn = CrossAttention( hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=True, norm_layer=RmsNorm,**block_kwargs) self.norm2 = RmsNorm(hidden_size, eps=1e-6) approx_gelu = lambda: nn.GELU(approximate="tanh") self.ffn = Mlp(in_features=hidden_size, hidden_features=hidden_size, act_layer=approx_gelu, drop=0) self.norm3 = RmsNorm(hidden_size, eps=1e-6) def forward(self, x, c, mask=None): origin_x = x x = self.norm1(x) x = self.attn(x) x = x + origin_x origin_x = x x = self.norm2(x) x = self.cross_attn(x, c, mask) x = x + origin_x origin_x = x x = self.norm3(x) x = self.ffn(x) x = x + origin_x return x class FinalLayer(nn.Module): """ The final layer of RDT. """ def __init__(self, hidden_size, out_channels): super().__init__() self.norm_final = RmsNorm(hidden_size, eps=1e-6) approx_gelu = lambda: nn.GELU(approximate="tanh") self.ffn_final = Mlp(in_features=hidden_size, hidden_features=hidden_size, out_features=out_channels, act_layer=approx_gelu, drop=0) def forward(self, x): x = self.norm_final(x) x = self.ffn_final(x) return x ################################################################################# # Sine/Cosine Positional Embedding Functions # ################################################################################# # https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2. omega = 1. / 10000**omega # (D/2,) if not isinstance(pos, np.ndarray): pos = np.array(pos, dtype=np.float64) pos = pos.reshape(-1) # (M,) out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb def get_nd_sincos_pos_embed_from_grid(embed_dim, grid_sizes): """ embed_dim: output dimension for each position grid_sizes: the grids sizes in each dimension (K,). out: (grid_sizes[0], ..., grid_sizes[K-1], D) """ num_sizes = len(grid_sizes) # For grid size of 1, we do not need to add any positional embedding num_valid_sizes = len([x for x in grid_sizes if x > 1]) emb = np.zeros(grid_sizes + (embed_dim,)) # Uniformly divide the embedding dimension for each grid size dim_for_each_grid = embed_dim // num_valid_sizes # To make it even if dim_for_each_grid % 2 != 0: dim_for_each_grid -= 1 valid_size_idx = 0 for size_idx in range(num_sizes): grid_size = grid_sizes[size_idx] if grid_size <= 1: continue pos = np.arange(grid_size) posemb_shape = [1] * len(grid_sizes) + [dim_for_each_grid] posemb_shape[size_idx] = -1 emb[..., valid_size_idx * dim_for_each_grid:(valid_size_idx + 1) * dim_for_each_grid] += \ get_1d_sincos_pos_embed_from_grid(dim_for_each_grid, pos).reshape(posemb_shape) valid_size_idx += 1 return emb def get_multimodal_cond_pos_embed(embed_dim, mm_cond_lens: OrderedDict, embed_modality=True): """ Generate position embeddings for multimodal conditions. mm_cond_lens: an OrderedDict containing (modality name, modality token length) pairs. For `"image"` modality, the value can be a multi-dimensional tuple. If the length < 0, it means there is no position embedding for the modality or grid. embed_modality: whether to embed the modality information. Default is True. """ num_modalities = len(mm_cond_lens) modality_pos_embed = np.zeros((num_modalities, embed_dim)) if embed_modality: # Get embeddings for various modalites # We put it in the first half modality_sincos_embed = get_1d_sincos_pos_embed_from_grid( embed_dim // 2, torch.arange(num_modalities)) modality_pos_embed[:, :embed_dim // 2] = modality_sincos_embed # The second half is for position embeddings pos_embed_dim = embed_dim // 2 else: # The whole embedding is for position embeddings pos_embed_dim = embed_dim # Get embeddings for positions inside each modality c_pos_emb = np.zeros((0, embed_dim)) for idx, (modality, cond_len) in enumerate(mm_cond_lens.items()): if modality == "image" and \ (isinstance(cond_len, tuple) or isinstance(cond_len, list)): all_grid_sizes = tuple([abs(x) for x in cond_len]) embed_grid_sizes = tuple([x if x > 0 else 1 for x in cond_len]) cond_sincos_embed = get_nd_sincos_pos_embed_from_grid( pos_embed_dim, embed_grid_sizes) cond_pos_embed = np.zeros(all_grid_sizes + (embed_dim,)) cond_pos_embed[..., -pos_embed_dim:] += cond_sincos_embed cond_pos_embed = cond_pos_embed.reshape((-1, embed_dim)) else: cond_sincos_embed = get_1d_sincos_pos_embed_from_grid( pos_embed_dim, torch.arange(cond_len if cond_len > 0 else 1)) cond_pos_embed = np.zeros((abs(cond_len), embed_dim)) cond_pos_embed[:, -pos_embed_dim:] += cond_sincos_embed cond_pos_embed += modality_pos_embed[idx] c_pos_emb = np.concatenate([c_pos_emb, cond_pos_embed], axis=0) return c_pos_emb