from typing import Callable, List, Type import gymnasium as gym import numpy as np from mani_skill.envs.sapien_env import BaseEnv from mani_skill.utils import common, gym_utils import argparse import yaml import torch from collections import deque from PIL import Image import cv2 from octo.model.octo_model import OctoModel from octo.utils.train_callbacks import supply_rng import imageio import jax import jax.numpy as jnp from octo.utils.train_callbacks import supply_rng from functools import partial def parse_args(args=None): parser = argparse.ArgumentParser() parser.add_argument("-e", "--env-id", type=str, default="PickCube-v1", help=f"Environment to run motion planning solver on. ") parser.add_argument("-o", "--obs-mode", type=str, default="rgb", help="Observation mode to use. Usually this is kept as 'none' as observations are not necesary to be stored, they can be replayed later via the mani_skill.trajectory.replay_trajectory script.") parser.add_argument("-n", "--num-traj", type=int, default=25, help="Number of trajectories to generate.") parser.add_argument("--only-count-success", action="store_true", help="If true, generates trajectories until num_traj of them are successful and only saves the successful trajectories/videos") parser.add_argument("--reward-mode", type=str) parser.add_argument("-b", "--sim-backend", type=str, default="auto", help="Which simulation backend to use. Can be 'auto', 'cpu', 'gpu'") parser.add_argument("--render-mode", type=str, default="rgb_array", help="can be 'sensors' or 'rgb_array' which only affect what is saved to videos") parser.add_argument("--vis", action="store_true", help="whether or not to open a GUI to visualize the solution live") parser.add_argument("--save-video", action="store_true", help="whether or not to save videos locally") parser.add_argument("--traj-name", type=str, help="The name of the trajectory .h5 file that will be created.") parser.add_argument("--shader", default="default", type=str, help="Change shader used for rendering. Default is 'default' which is very fast. Can also be 'rt' for ray tracing and generating photo-realistic renders. Can also be 'rt-fast' for a faster but lower quality ray-traced renderer") parser.add_argument("--record-dir", type=str, default="demos", help="where to save the recorded trajectories") parser.add_argument("--num-procs", type=int, default=1, help="Number of processes to use to help parallelize the trajectory replay process. This uses CPU multiprocessing and only works with the CPU simulation backend at the moment.") parser.add_argument("--random_seed", type=int, default=0, help="Random seed for the environment.") parser.add_argument("--pretrained_path", type=str, default=None, help="Path to the pretrained model") return parser.parse_args() task2lang = { "PegInsertionSide-v1": "Pick up a orange-white peg and insert the orange end into the box with a hole in it.", "PickCube-v1": "Grasp a red cube and move it to a target goal position.", "StackCube-v1": "Pick up a red cube and stack it on top of a green cube and let go of the cube without it falling.", "PlugCharger-v1": "Pick up one of the misplaced shapes on the board/kit and insert it into the correct empty slot.", "PushCube-v1": "Push and move a cube to a goal region in front of it." } import random import os args = parse_args() seed = args.random_seed random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False env_id = args.env_id env = gym.make( env_id, obs_mode=args.obs_mode, control_mode="pd_ee_delta_pose", render_mode=args.render_mode, reward_mode="dense" if args.reward_mode is None else args.reward_mode, sensor_configs=dict(shader_pack=args.shader), human_render_camera_configs=dict(shader_pack=args.shader), viewer_camera_configs=dict(shader_pack=args.shader), sim_backend=args.sim_backend ) def sample_actions( pretrained_model: OctoModel, observations, tasks, rng, ): # add batch dim to observations observations = jax.tree_map(lambda x: x[None], observations) actions = pretrained_model.sample_actions( observations, tasks, rng=rng, ) # remove batch dim return actions[0] pretrain_path = args.pretrained_path step = 1000000 model = OctoModel.load_pretrained( pretrain_path, step ) policy = supply_rng( partial( sample_actions, model, ) ) import tensorflow as tf def resize_img(image, size=(256, 256)): image_tf = tf.convert_to_tensor(image, dtype=tf.float32) image_tf = tf.expand_dims(image_tf, axis=0) resized_tf = tf.image.resize( image_tf, size, method=tf.image.ResizeMethod.LANCZOS3, antialias=True ) resized_tf = tf.squeeze(resized_tf) resized_img = resized_tf.numpy().astype(np.uint8) return resized_img MAX_EPISODE_STEPS = 400 total_episodes = args.num_traj success_count = 0 base_seed = 20241201 import tqdm for episode in tqdm.trange(total_episodes): task = model.create_tasks(texts=[task2lang[env_id]]) obs_window = deque(maxlen=2) obs, _ = env.reset(seed = base_seed) img = env.render().squeeze(0).detach().cpu().numpy() proprio = obs['agent']['qpos'][:] obs_window.append({ 'proprio': proprio.detach().cpu().numpy(), "image_primary": resize_img(img)[None], "timestep_pad_mask": np.zeros((1),dtype = bool) }) obs_window.append({ 'proprio': proprio.detach().cpu().numpy(), "image_primary": resize_img(img)[None], "timestep_pad_mask": np.ones((1),dtype = bool) }) global_steps = 0 video_frames = [] success_time = 0 done = False while global_steps < MAX_EPISODE_STEPS and not done: obs = { 'proprio': np.concatenate([obs_window[0]['proprio'], obs_window[1]['proprio']], axis=0), "image_primary": np.concatenate([obs_window[0]['image_primary'], obs_window[1]['image_primary']], axis=0), "timestep_pad_mask": np.concatenate([obs_window[0]['timestep_pad_mask'], obs_window[1]['timestep_pad_mask']], axis=0) } actions = policy(obs, task) actions = jax.device_put(actions, device=jax.devices('cpu')[0]) actions = jax.device_get(actions) # actions = actions[0:4] for idx in range(actions.shape[0]): action = actions[idx] obs, reward, terminated, truncated, info = env.step(action) img = env.render().squeeze(0).detach().cpu().numpy() proprio = obs['agent']['qpos'][:] obs_window.append({ 'proprio': proprio.detach().cpu().numpy(), "image_primary": resize_img(img)[None], "timestep_pad_mask": np.ones((1),dtype = bool) }) video_frames.append(img) global_steps += 1 if terminated or truncated: assert "success" in info, sorted(info.keys()) if info['success']: done = True success_count += 1 break print(f"Trial {episode+1} finished, success: {info['success']}, steps: {global_steps}") success_rate = success_count / total_episodes * 100 print(f"Random seed: {seed}, Pretrained_path: {pretrain_path}") print(f"Tested {total_episodes} episodes, success rate: {success_rate:.2f}%") log_file = "results_octo.log" with open(log_file, 'a') as f: f.write(f"{seed}:{success_count}\n")