from typing import Callable, List, Type import sys sys.path.append('/') import gymnasium as gym import numpy as np from mani_skill.envs.sapien_env import BaseEnv from mani_skill.utils import common, gym_utils import argparse import yaml from scripts.maniskill_model import create_model, RoboticDiffusionTransformerModel import torch from collections import deque from PIL import Image import cv2 def parse_args(args=None): parser = argparse.ArgumentParser() parser.add_argument("-e", "--env-id", type=str, default="PickCube-v1", help=f"Environment to run motion planning solver on. ") parser.add_argument("-o", "--obs-mode", type=str, default="rgb", help="Observation mode to use. Usually this is kept as 'none' as observations are not necesary to be stored, they can be replayed later via the mani_skill.trajectory.replay_trajectory script.") parser.add_argument("-n", "--num-traj", type=int, default=25, help="Number of trajectories to test.") parser.add_argument("--only-count-success", action="store_true", help="If true, generates trajectories until num_traj of them are successful and only saves the successful trajectories/videos") parser.add_argument("--reward-mode", type=str) parser.add_argument("-b", "--sim-backend", type=str, default="auto", help="Which simulation backend to use. Can be 'auto', 'cpu', 'gpu'") parser.add_argument("--render-mode", type=str, default="rgb_array", help="can be 'sensors' or 'rgb_array' which only affect what is saved to videos") parser.add_argument("--shader", default="default", type=str, help="Change shader used for rendering. Default is 'default' which is very fast. Can also be 'rt' for ray tracing and generating photo-realistic renders. Can also be 'rt-fast' for a faster but lower quality ray-traced renderer") parser.add_argument("--num-procs", type=int, default=1, help="Number of processes to use to help parallelize the trajectory replay process. This uses CPU multiprocessing and only works with the CPU simulation backend at the moment.") parser.add_argument("--pretrained_path", type=str, default=None, help="Path to the pretrained model") parser.add_argument("--random_seed", type=int, default=0, help="Random seed for the environment.") return parser.parse_args() import random import os # set cuda args = parse_args() # set random seeds seed = args.random_seed random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False task2lang = { "PegInsertionSide-v1": "Pick up a orange-white peg and insert the orange end into the box with a hole in it.", "PickCube-v1": "Grasp a red cube and move it to a target goal position.", "StackCube-v1": "Pick up a red cube and stack it on top of a green cube and let go of the cube without it falling.", "PlugCharger-v1": "Pick up one of the misplaced shapes on the board/kit and insert it into the correct empty slot.", "PushCube-v1": "Push and move a cube to a goal region in front of it." } env_id = args.env_id env = gym.make( env_id, obs_mode=args.obs_mode, control_mode="pd_joint_pos", render_mode=args.render_mode, reward_mode="dense" if args.reward_mode is None else args.reward_mode, sensor_configs=dict(shader_pack=args.shader), human_render_camera_configs=dict(shader_pack=args.shader), viewer_camera_configs=dict(shader_pack=args.shader), sim_backend=args.sim_backend ) config_path = 'configs/base.yaml' with open(config_path, "r") as fp: config = yaml.safe_load(fp) pretrained_text_encoder_name_or_path = "google/t5-v1_1-xxl" pretrained_vision_encoder_name_or_path = "google/siglip-so400m-patch14-384" pretrained_path = args.pretrained_path policy = create_model( args=config, dtype=torch.bfloat16, pretrained=pretrained_path, pretrained_text_encoder_name_or_path=pretrained_text_encoder_name_or_path, pretrained_vision_encoder_name_or_path=pretrained_vision_encoder_name_or_path ) if os.path.exists(f'text_embed_{env_id}.pt'): text_embed = torch.load(f'text_embed_{env_id}.pt') else: text_embed = policy.encode_instruction(task2lang[env_id]) torch.save(text_embed, f'text_embed_{env_id}.pt') MAX_EPISODE_STEPS = 400 total_episodes = args.num_traj success_count = 0 base_seed = 20241201 import tqdm for episode in tqdm.trange(total_episodes): obs_window = deque(maxlen=2) obs, _ = env.reset(seed = episode + base_seed) policy.reset() img = env.render().squeeze(0).detach().cpu().numpy() obs_window.append(None) obs_window.append(np.array(img)) proprio = obs['agent']['qpos'][:, :-1] global_steps = 0 video_frames = [] success_time = 0 done = False while global_steps < MAX_EPISODE_STEPS and not done: image_arrs = [] for window_img in obs_window: image_arrs.append(window_img) image_arrs.append(None) image_arrs.append(None) images = [Image.fromarray(arr) if arr is not None else None for arr in image_arrs] actions = policy.step(proprio, images, text_embed).squeeze(0).cpu().numpy() # Take 8 steps since RDT is trained to predict interpolated 64 steps(actual 14 steps) actions = actions[::4, :] for idx in range(actions.shape[0]): action = actions[idx] obs, reward, terminated, truncated, info = env.step(action) img = env.render().squeeze(0).detach().cpu().numpy() obs_window.append(img) proprio = obs['agent']['qpos'][:, :-1] video_frames.append(img) global_steps += 1 if terminated or truncated: assert "success" in info, sorted(info.keys()) if info['success']: success_count += 1 done = True break print(f"Trial {episode+1} finished, success: {info['success']}, steps: {global_steps}") success_rate = success_count / total_episodes * 100 print(f"Success rate: {success_rate}%")