Upload inference.py with huggingface_hub
Browse files- inference.py +22 -0
inference.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Example inference code
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
# Load the model
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained("exaler/aaa-2-sql-2")
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained("exaler/aaa-2-sql-2")
|
| 8 |
+
|
| 9 |
+
def generate_sql(instruction, input_text):
|
| 10 |
+
# Format prompt
|
| 11 |
+
prompt = f"<s>[INST] {instruction}\n\n{input_text} [/INST]"
|
| 12 |
+
|
| 13 |
+
# Generate
|
| 14 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 15 |
+
outputs = model.generate(
|
| 16 |
+
inputs=inputs.input_ids,
|
| 17 |
+
max_new_tokens=512,
|
| 18 |
+
temperature=0.0,
|
| 19 |
+
do_sample=False
|
| 20 |
+
)
|
| 21 |
+
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 22 |
+
return response
|