Upload 21 files
Browse files- README.md +70 -0
- create_handler.ipynb +275 -0
- feature_extractor/preprocessor_config.json +20 -0
- handler.py +42 -0
- model_index.json +32 -0
- requirements.txt +1 -0
- safety_checker/config.json +174 -0
- safety_checker/pytorch_model.bin +3 -0
- sample.jpg +0 -0
- scheduler/.ipynb_checkpoints/scheduler_config-checkpoint.json +9 -0
- scheduler/scheduler_config.json +9 -0
- text_encoder/config.json +24 -0
- text_encoder/pytorch_model.bin +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +34 -0
- tokenizer/vocab.json +0 -0
- unet/config.json +37 -0
- unet/diffusion_pytorch_model.bin +3 -0
- vae/config.json +29 -0
- vae/diffusion_pytorch_model.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: creativeml-openrail-m
|
| 3 |
+
tags:
|
| 4 |
+
- stable-diffusion
|
| 5 |
+
- stable-diffusion-diffusers
|
| 6 |
+
- text-to-image
|
| 7 |
+
- endpoints-template
|
| 8 |
+
inference: false
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Fork of [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)
|
| 12 |
+
|
| 13 |
+
> Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input.
|
| 14 |
+
> For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion with 🧨Diffusers blog](https://huggingface.co/blog/stable_diffusion).
|
| 15 |
+
|
| 16 |
+
For more information about the model, license and limitations check the original model card at [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4).
|
| 17 |
+
|
| 18 |
+
### License (CreativeML OpenRAIL-M)
|
| 19 |
+
|
| 20 |
+
The full license can be found here: https://huggingface.co/spaces/CompVis/stable-diffusion-license
|
| 21 |
+
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
This repository implements a custom `handler` task for `text-to-image` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/stable-diffusion-v1-4-endpoints/blob/main/handler.py).
|
| 25 |
+
|
| 26 |
+
There is also a [notebook](https://huggingface.co/philschmid/stable-diffusion-v1-4-endpoints/blob/main/create_handler.ipynb) included, on how to create the `handler.py`
|
| 27 |
+
|
| 28 |
+
### expected Request payload
|
| 29 |
+
```json
|
| 30 |
+
{
|
| 31 |
+
"inputs": "A prompt used for image generation"
|
| 32 |
+
}
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
below is an example on how to run a request using Python and `requests`.
|
| 36 |
+
|
| 37 |
+
## Run Request
|
| 38 |
+
```python
|
| 39 |
+
import json
|
| 40 |
+
from typing import List
|
| 41 |
+
import requests as r
|
| 42 |
+
import base64
|
| 43 |
+
from PIL import Image
|
| 44 |
+
from io import BytesIO
|
| 45 |
+
|
| 46 |
+
ENDPOINT_URL = ""
|
| 47 |
+
HF_TOKEN = ""
|
| 48 |
+
|
| 49 |
+
# helper decoder
|
| 50 |
+
def decode_base64_image(image_string):
|
| 51 |
+
base64_image = base64.b64decode(image_string)
|
| 52 |
+
buffer = BytesIO(base64_image)
|
| 53 |
+
return Image.open(buffer)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def predict(prompt:str=None):
|
| 57 |
+
payload = {"inputs": code_snippet,"parameters": parameters}
|
| 58 |
+
response = r.post(
|
| 59 |
+
ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json={"inputs": prompt}
|
| 60 |
+
)
|
| 61 |
+
resp = response.json()
|
| 62 |
+
return decode_base64_image(resp["image"])
|
| 63 |
+
|
| 64 |
+
prediction = predict(
|
| 65 |
+
prompt="the first animal on the mars"
|
| 66 |
+
)
|
| 67 |
+
```
|
| 68 |
+
expected output
|
| 69 |
+
|
| 70 |
+

|
create_handler.ipynb
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Setup & Installation"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": 1,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [
|
| 15 |
+
{
|
| 16 |
+
"name": "stdout",
|
| 17 |
+
"output_type": "stream",
|
| 18 |
+
"text": [
|
| 19 |
+
"Overwriting requirements.txt\n"
|
| 20 |
+
]
|
| 21 |
+
}
|
| 22 |
+
],
|
| 23 |
+
"source": [
|
| 24 |
+
"%%writefile requirements.txt\n",
|
| 25 |
+
"diffusers==0.2.4"
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"execution_count": null,
|
| 31 |
+
"metadata": {},
|
| 32 |
+
"outputs": [],
|
| 33 |
+
"source": [
|
| 34 |
+
"!pip install -r requirements.txt --upgrade"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "markdown",
|
| 39 |
+
"metadata": {},
|
| 40 |
+
"source": [
|
| 41 |
+
"## 3. Create Custom Handler for Inference Endpoints\n"
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"cell_type": "code",
|
| 46 |
+
"execution_count": 10,
|
| 47 |
+
"metadata": {},
|
| 48 |
+
"outputs": [
|
| 49 |
+
{
|
| 50 |
+
"data": {
|
| 51 |
+
"text/plain": [
|
| 52 |
+
"device(type='cuda')"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
"execution_count": 10,
|
| 56 |
+
"metadata": {},
|
| 57 |
+
"output_type": "execute_result"
|
| 58 |
+
}
|
| 59 |
+
],
|
| 60 |
+
"source": [
|
| 61 |
+
"import torch\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
| 64 |
+
"device"
|
| 65 |
+
]
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"cell_type": "code",
|
| 69 |
+
"execution_count": 11,
|
| 70 |
+
"metadata": {},
|
| 71 |
+
"outputs": [],
|
| 72 |
+
"source": [
|
| 73 |
+
"if device.type != 'cuda':\n",
|
| 74 |
+
" raise ValueError(\"need to run on GPU\")"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"execution_count": 5,
|
| 80 |
+
"metadata": {},
|
| 81 |
+
"outputs": [
|
| 82 |
+
{
|
| 83 |
+
"name": "stdout",
|
| 84 |
+
"output_type": "stream",
|
| 85 |
+
"text": [
|
| 86 |
+
"Overwriting handler.py\n"
|
| 87 |
+
]
|
| 88 |
+
}
|
| 89 |
+
],
|
| 90 |
+
"source": [
|
| 91 |
+
"%%writefile handler.py\n",
|
| 92 |
+
"from typing import Dict, List, Any\n",
|
| 93 |
+
"import torch\n",
|
| 94 |
+
"from torch import autocast\n",
|
| 95 |
+
"from diffusers import StableDiffusionPipeline\n",
|
| 96 |
+
"import base64\n",
|
| 97 |
+
"from io import BytesIO\n",
|
| 98 |
+
"\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"# set device\n",
|
| 101 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"if device.type != 'cuda':\n",
|
| 104 |
+
" raise ValueError(\"need to run on GPU\")\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"class EndpointHandler():\n",
|
| 107 |
+
" def __init__(self, path=\"\"):\n",
|
| 108 |
+
" # load the optimized model\n",
|
| 109 |
+
" self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)\n",
|
| 110 |
+
" self.pipe = self.pipe.to(device)\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"\n",
|
| 113 |
+
" def __call__(self, data: Any) -> List[List[Dict[str, float]]]:\n",
|
| 114 |
+
" \"\"\"\n",
|
| 115 |
+
" Args:\n",
|
| 116 |
+
" data (:obj:):\n",
|
| 117 |
+
" includes the input data and the parameters for the inference.\n",
|
| 118 |
+
" Return:\n",
|
| 119 |
+
" A :obj:`dict`:. base64 encoded image\n",
|
| 120 |
+
" \"\"\"\n",
|
| 121 |
+
" inputs = data.pop(\"inputs\", data)\n",
|
| 122 |
+
" \n",
|
| 123 |
+
" # run inference pipeline\n",
|
| 124 |
+
" with autocast(device.type):\n",
|
| 125 |
+
" image = self.pipe(inputs, guidance_scale=7.5)[\"sample\"][0] \n",
|
| 126 |
+
" \n",
|
| 127 |
+
" # encode image as base 64\n",
|
| 128 |
+
" buffered = BytesIO()\n",
|
| 129 |
+
" image.save(buffered, format=\"JPEG\")\n",
|
| 130 |
+
" img_str = base64.b64encode(buffered.getvalue())\n",
|
| 131 |
+
"\n",
|
| 132 |
+
" # postprocess the prediction\n",
|
| 133 |
+
" return {\"image\": img_str.decode()}"
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"cell_type": "markdown",
|
| 138 |
+
"metadata": {},
|
| 139 |
+
"source": [
|
| 140 |
+
"test custom pipeline"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"cell_type": "code",
|
| 145 |
+
"execution_count": 6,
|
| 146 |
+
"metadata": {},
|
| 147 |
+
"outputs": [
|
| 148 |
+
{
|
| 149 |
+
"data": {
|
| 150 |
+
"text/plain": [
|
| 151 |
+
"'1.11.0+cu113'"
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
"execution_count": 6,
|
| 155 |
+
"metadata": {},
|
| 156 |
+
"output_type": "execute_result"
|
| 157 |
+
}
|
| 158 |
+
],
|
| 159 |
+
"source": [
|
| 160 |
+
"import torch\n",
|
| 161 |
+
"\n",
|
| 162 |
+
"torch.__version__"
|
| 163 |
+
]
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"cell_type": "code",
|
| 167 |
+
"execution_count": 1,
|
| 168 |
+
"metadata": {},
|
| 169 |
+
"outputs": [
|
| 170 |
+
{
|
| 171 |
+
"name": "stderr",
|
| 172 |
+
"output_type": "stream",
|
| 173 |
+
"text": [
|
| 174 |
+
"ftfy or spacy is not installed using BERT BasicTokenizer instead of ftfy.\n"
|
| 175 |
+
]
|
| 176 |
+
}
|
| 177 |
+
],
|
| 178 |
+
"source": [
|
| 179 |
+
"from handler import EndpointHandler\n",
|
| 180 |
+
"\n",
|
| 181 |
+
"# init handler\n",
|
| 182 |
+
"my_handler = EndpointHandler(path=\".\")"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"cell_type": "code",
|
| 187 |
+
"execution_count": 6,
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"outputs": [
|
| 190 |
+
{
|
| 191 |
+
"data": {
|
| 192 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 193 |
+
"model_id": "376de150f16b4b4bb0c3ab8c513de5c0",
|
| 194 |
+
"version_major": 2,
|
| 195 |
+
"version_minor": 0
|
| 196 |
+
},
|
| 197 |
+
"text/plain": [
|
| 198 |
+
"0it [00:00, ?it/s]"
|
| 199 |
+
]
|
| 200 |
+
},
|
| 201 |
+
"metadata": {},
|
| 202 |
+
"output_type": "display_data"
|
| 203 |
+
}
|
| 204 |
+
],
|
| 205 |
+
"source": [
|
| 206 |
+
"import base64\n",
|
| 207 |
+
"from PIL import Image\n",
|
| 208 |
+
"from io import BytesIO\n",
|
| 209 |
+
"import json\n",
|
| 210 |
+
"\n",
|
| 211 |
+
"# helper decoder\n",
|
| 212 |
+
"def decode_base64_image(image_string):\n",
|
| 213 |
+
" base64_image = base64.b64decode(image_string)\n",
|
| 214 |
+
" buffer = BytesIO(base64_image)\n",
|
| 215 |
+
" return Image.open(buffer)\n",
|
| 216 |
+
"\n",
|
| 217 |
+
"# prepare sample payload\n",
|
| 218 |
+
"request = {\"inputs\": \"a high resulotion image of a macbook\"}\n",
|
| 219 |
+
"\n",
|
| 220 |
+
"# test the handler\n",
|
| 221 |
+
"pred = my_handler(request)"
|
| 222 |
+
]
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"cell_type": "code",
|
| 226 |
+
"execution_count": 4,
|
| 227 |
+
"metadata": {},
|
| 228 |
+
"outputs": [],
|
| 229 |
+
"source": [
|
| 230 |
+
"decode_base64_image(pred[\"image\"]).save(\"sample.jpg\")"
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"cell_type": "markdown",
|
| 235 |
+
"metadata": {},
|
| 236 |
+
"source": [
|
| 237 |
+
""
|
| 238 |
+
]
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"cell_type": "code",
|
| 242 |
+
"execution_count": null,
|
| 243 |
+
"metadata": {},
|
| 244 |
+
"outputs": [],
|
| 245 |
+
"source": []
|
| 246 |
+
}
|
| 247 |
+
],
|
| 248 |
+
"metadata": {
|
| 249 |
+
"kernelspec": {
|
| 250 |
+
"display_name": "Python 3.9.13 ('dev': conda)",
|
| 251 |
+
"language": "python",
|
| 252 |
+
"name": "python3"
|
| 253 |
+
},
|
| 254 |
+
"language_info": {
|
| 255 |
+
"codemirror_mode": {
|
| 256 |
+
"name": "ipython",
|
| 257 |
+
"version": 3
|
| 258 |
+
},
|
| 259 |
+
"file_extension": ".py",
|
| 260 |
+
"mimetype": "text/x-python",
|
| 261 |
+
"name": "python",
|
| 262 |
+
"nbconvert_exporter": "python",
|
| 263 |
+
"pygments_lexer": "ipython3",
|
| 264 |
+
"version": "3.9.13"
|
| 265 |
+
},
|
| 266 |
+
"orig_nbformat": 4,
|
| 267 |
+
"vscode": {
|
| 268 |
+
"interpreter": {
|
| 269 |
+
"hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
|
| 270 |
+
}
|
| 271 |
+
}
|
| 272 |
+
},
|
| 273 |
+
"nbformat": 4,
|
| 274 |
+
"nbformat_minor": 2
|
| 275 |
+
}
|
feature_extractor/preprocessor_config.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": 224,
|
| 3 |
+
"do_center_crop": true,
|
| 4 |
+
"do_convert_rgb": true,
|
| 5 |
+
"do_normalize": true,
|
| 6 |
+
"do_resize": true,
|
| 7 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
| 8 |
+
"image_mean": [
|
| 9 |
+
0.48145466,
|
| 10 |
+
0.4578275,
|
| 11 |
+
0.40821073
|
| 12 |
+
],
|
| 13 |
+
"image_std": [
|
| 14 |
+
0.26862954,
|
| 15 |
+
0.26130258,
|
| 16 |
+
0.27577711
|
| 17 |
+
],
|
| 18 |
+
"resample": 3,
|
| 19 |
+
"size": 224
|
| 20 |
+
}
|
handler.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
import torch
|
| 3 |
+
from torch import autocast
|
| 4 |
+
from diffusers import StableDiffusionPipeline
|
| 5 |
+
import base64
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# set device
|
| 10 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 11 |
+
|
| 12 |
+
if device.type != 'cuda':
|
| 13 |
+
raise ValueError("need to run on GPU")
|
| 14 |
+
|
| 15 |
+
class EndpointHandler():
|
| 16 |
+
def __init__(self, path=""):
|
| 17 |
+
# load the optimized model
|
| 18 |
+
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
| 19 |
+
self.pipe = self.pipe.to(device)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
| 23 |
+
"""
|
| 24 |
+
Args:
|
| 25 |
+
data (:obj:):
|
| 26 |
+
includes the input data and the parameters for the inference.
|
| 27 |
+
Return:
|
| 28 |
+
A :obj:`dict`:. base64 encoded image
|
| 29 |
+
"""
|
| 30 |
+
inputs = data.pop("inputs", data)
|
| 31 |
+
|
| 32 |
+
# run inference pipeline
|
| 33 |
+
with autocast(device.type):
|
| 34 |
+
image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
|
| 35 |
+
|
| 36 |
+
# encode image as base 64
|
| 37 |
+
buffered = BytesIO()
|
| 38 |
+
image.save(buffered, format="JPEG")
|
| 39 |
+
img_str = base64.b64encode(buffered.getvalue())
|
| 40 |
+
|
| 41 |
+
# postprocess the prediction
|
| 42 |
+
return {"image": img_str.decode()}
|
model_index.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "StableDiffusionPipeline",
|
| 3 |
+
"_diffusers_version": "0.2.3",
|
| 4 |
+
"feature_extractor": [
|
| 5 |
+
"transformers",
|
| 6 |
+
"CLIPFeatureExtractor"
|
| 7 |
+
],
|
| 8 |
+
"safety_checker": [
|
| 9 |
+
"stable_diffusion",
|
| 10 |
+
"StableDiffusionSafetyChecker"
|
| 11 |
+
],
|
| 12 |
+
"scheduler": [
|
| 13 |
+
"diffusers",
|
| 14 |
+
"PNDMScheduler"
|
| 15 |
+
],
|
| 16 |
+
"text_encoder": [
|
| 17 |
+
"transformers",
|
| 18 |
+
"CLIPTextModel"
|
| 19 |
+
],
|
| 20 |
+
"tokenizer": [
|
| 21 |
+
"transformers",
|
| 22 |
+
"CLIPTokenizer"
|
| 23 |
+
],
|
| 24 |
+
"unet": [
|
| 25 |
+
"diffusers",
|
| 26 |
+
"UNet2DConditionModel"
|
| 27 |
+
],
|
| 28 |
+
"vae": [
|
| 29 |
+
"diffusers",
|
| 30 |
+
"AutoencoderKL"
|
| 31 |
+
]
|
| 32 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
diffusers==0.2.4
|
safety_checker/config.json
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "./safety_checker",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"StableDiffusionSafetyChecker"
|
| 5 |
+
],
|
| 6 |
+
"initializer_factor": 1.0,
|
| 7 |
+
"logit_scale_init_value": 2.6592,
|
| 8 |
+
"model_type": "clip",
|
| 9 |
+
"projection_dim": 768,
|
| 10 |
+
"text_config": {
|
| 11 |
+
"_name_or_path": "",
|
| 12 |
+
"add_cross_attention": false,
|
| 13 |
+
"architectures": null,
|
| 14 |
+
"attention_dropout": 0.0,
|
| 15 |
+
"bad_words_ids": null,
|
| 16 |
+
"bos_token_id": 0,
|
| 17 |
+
"chunk_size_feed_forward": 0,
|
| 18 |
+
"cross_attention_hidden_size": null,
|
| 19 |
+
"decoder_start_token_id": null,
|
| 20 |
+
"diversity_penalty": 0.0,
|
| 21 |
+
"do_sample": false,
|
| 22 |
+
"dropout": 0.0,
|
| 23 |
+
"early_stopping": false,
|
| 24 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 25 |
+
"eos_token_id": 2,
|
| 26 |
+
"exponential_decay_length_penalty": null,
|
| 27 |
+
"finetuning_task": null,
|
| 28 |
+
"forced_bos_token_id": null,
|
| 29 |
+
"forced_eos_token_id": null,
|
| 30 |
+
"hidden_act": "quick_gelu",
|
| 31 |
+
"hidden_size": 768,
|
| 32 |
+
"id2label": {
|
| 33 |
+
"0": "LABEL_0",
|
| 34 |
+
"1": "LABEL_1"
|
| 35 |
+
},
|
| 36 |
+
"initializer_factor": 1.0,
|
| 37 |
+
"initializer_range": 0.02,
|
| 38 |
+
"intermediate_size": 3072,
|
| 39 |
+
"is_decoder": false,
|
| 40 |
+
"is_encoder_decoder": false,
|
| 41 |
+
"label2id": {
|
| 42 |
+
"LABEL_0": 0,
|
| 43 |
+
"LABEL_1": 1
|
| 44 |
+
},
|
| 45 |
+
"layer_norm_eps": 1e-05,
|
| 46 |
+
"length_penalty": 1.0,
|
| 47 |
+
"max_length": 20,
|
| 48 |
+
"max_position_embeddings": 77,
|
| 49 |
+
"min_length": 0,
|
| 50 |
+
"model_type": "clip_text_model",
|
| 51 |
+
"no_repeat_ngram_size": 0,
|
| 52 |
+
"num_attention_heads": 12,
|
| 53 |
+
"num_beam_groups": 1,
|
| 54 |
+
"num_beams": 1,
|
| 55 |
+
"num_hidden_layers": 12,
|
| 56 |
+
"num_return_sequences": 1,
|
| 57 |
+
"output_attentions": false,
|
| 58 |
+
"output_hidden_states": false,
|
| 59 |
+
"output_scores": false,
|
| 60 |
+
"pad_token_id": 1,
|
| 61 |
+
"prefix": null,
|
| 62 |
+
"problem_type": null,
|
| 63 |
+
"pruned_heads": {},
|
| 64 |
+
"remove_invalid_values": false,
|
| 65 |
+
"repetition_penalty": 1.0,
|
| 66 |
+
"return_dict": true,
|
| 67 |
+
"return_dict_in_generate": false,
|
| 68 |
+
"sep_token_id": null,
|
| 69 |
+
"task_specific_params": null,
|
| 70 |
+
"temperature": 1.0,
|
| 71 |
+
"tf_legacy_loss": false,
|
| 72 |
+
"tie_encoder_decoder": false,
|
| 73 |
+
"tie_word_embeddings": true,
|
| 74 |
+
"tokenizer_class": null,
|
| 75 |
+
"top_k": 50,
|
| 76 |
+
"top_p": 1.0,
|
| 77 |
+
"torch_dtype": null,
|
| 78 |
+
"torchscript": false,
|
| 79 |
+
"transformers_version": "4.21.1",
|
| 80 |
+
"typical_p": 1.0,
|
| 81 |
+
"use_bfloat16": false,
|
| 82 |
+
"vocab_size": 49408
|
| 83 |
+
},
|
| 84 |
+
"text_config_dict": {
|
| 85 |
+
"hidden_size": 768,
|
| 86 |
+
"intermediate_size": 3072,
|
| 87 |
+
"num_attention_heads": 12,
|
| 88 |
+
"num_hidden_layers": 12
|
| 89 |
+
},
|
| 90 |
+
"torch_dtype": "float16",
|
| 91 |
+
"transformers_version": null,
|
| 92 |
+
"vision_config": {
|
| 93 |
+
"_name_or_path": "",
|
| 94 |
+
"add_cross_attention": false,
|
| 95 |
+
"architectures": null,
|
| 96 |
+
"attention_dropout": 0.0,
|
| 97 |
+
"bad_words_ids": null,
|
| 98 |
+
"bos_token_id": null,
|
| 99 |
+
"chunk_size_feed_forward": 0,
|
| 100 |
+
"cross_attention_hidden_size": null,
|
| 101 |
+
"decoder_start_token_id": null,
|
| 102 |
+
"diversity_penalty": 0.0,
|
| 103 |
+
"do_sample": false,
|
| 104 |
+
"dropout": 0.0,
|
| 105 |
+
"early_stopping": false,
|
| 106 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 107 |
+
"eos_token_id": null,
|
| 108 |
+
"exponential_decay_length_penalty": null,
|
| 109 |
+
"finetuning_task": null,
|
| 110 |
+
"forced_bos_token_id": null,
|
| 111 |
+
"forced_eos_token_id": null,
|
| 112 |
+
"hidden_act": "quick_gelu",
|
| 113 |
+
"hidden_size": 1024,
|
| 114 |
+
"id2label": {
|
| 115 |
+
"0": "LABEL_0",
|
| 116 |
+
"1": "LABEL_1"
|
| 117 |
+
},
|
| 118 |
+
"image_size": 224,
|
| 119 |
+
"initializer_factor": 1.0,
|
| 120 |
+
"initializer_range": 0.02,
|
| 121 |
+
"intermediate_size": 4096,
|
| 122 |
+
"is_decoder": false,
|
| 123 |
+
"is_encoder_decoder": false,
|
| 124 |
+
"label2id": {
|
| 125 |
+
"LABEL_0": 0,
|
| 126 |
+
"LABEL_1": 1
|
| 127 |
+
},
|
| 128 |
+
"layer_norm_eps": 1e-05,
|
| 129 |
+
"length_penalty": 1.0,
|
| 130 |
+
"max_length": 20,
|
| 131 |
+
"min_length": 0,
|
| 132 |
+
"model_type": "clip_vision_model",
|
| 133 |
+
"no_repeat_ngram_size": 0,
|
| 134 |
+
"num_attention_heads": 16,
|
| 135 |
+
"num_beam_groups": 1,
|
| 136 |
+
"num_beams": 1,
|
| 137 |
+
"num_channels": 3,
|
| 138 |
+
"num_hidden_layers": 24,
|
| 139 |
+
"num_return_sequences": 1,
|
| 140 |
+
"output_attentions": false,
|
| 141 |
+
"output_hidden_states": false,
|
| 142 |
+
"output_scores": false,
|
| 143 |
+
"pad_token_id": null,
|
| 144 |
+
"patch_size": 14,
|
| 145 |
+
"prefix": null,
|
| 146 |
+
"problem_type": null,
|
| 147 |
+
"pruned_heads": {},
|
| 148 |
+
"remove_invalid_values": false,
|
| 149 |
+
"repetition_penalty": 1.0,
|
| 150 |
+
"return_dict": true,
|
| 151 |
+
"return_dict_in_generate": false,
|
| 152 |
+
"sep_token_id": null,
|
| 153 |
+
"task_specific_params": null,
|
| 154 |
+
"temperature": 1.0,
|
| 155 |
+
"tf_legacy_loss": false,
|
| 156 |
+
"tie_encoder_decoder": false,
|
| 157 |
+
"tie_word_embeddings": true,
|
| 158 |
+
"tokenizer_class": null,
|
| 159 |
+
"top_k": 50,
|
| 160 |
+
"top_p": 1.0,
|
| 161 |
+
"torch_dtype": null,
|
| 162 |
+
"torchscript": false,
|
| 163 |
+
"transformers_version": "4.21.1",
|
| 164 |
+
"typical_p": 1.0,
|
| 165 |
+
"use_bfloat16": false
|
| 166 |
+
},
|
| 167 |
+
"vision_config_dict": {
|
| 168 |
+
"hidden_size": 1024,
|
| 169 |
+
"intermediate_size": 4096,
|
| 170 |
+
"num_attention_heads": 16,
|
| 171 |
+
"num_hidden_layers": 24,
|
| 172 |
+
"patch_size": 14
|
| 173 |
+
}
|
| 174 |
+
}
|
safety_checker/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1d37ca6e57ace94e4c2f03ed0f67b6dc83e1ef1160892074917aa68b28e2afc1
|
| 3 |
+
size 608098599
|
sample.jpg
ADDED
|
scheduler/.ipynb_checkpoints/scheduler_config-checkpoint.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "PNDMScheduler",
|
| 3 |
+
"_diffusers_version": "0.2.2",
|
| 4 |
+
"beta_end": 0.012,
|
| 5 |
+
"beta_schedule": "scaled_linear",
|
| 6 |
+
"beta_start": 0.00085,
|
| 7 |
+
"num_train_timesteps": 1000,
|
| 8 |
+
"skip_prk_steps": true
|
| 9 |
+
}
|
scheduler/scheduler_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "PNDMScheduler",
|
| 3 |
+
"_diffusers_version": "0.2.3",
|
| 4 |
+
"beta_end": 0.012,
|
| 5 |
+
"beta_schedule": "scaled_linear",
|
| 6 |
+
"beta_start": 0.00085,
|
| 7 |
+
"num_train_timesteps": 1000,
|
| 8 |
+
"skip_prk_steps": true
|
| 9 |
+
}
|
text_encoder/config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "./text_encoder",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"CLIPTextModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"dropout": 0.0,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "quick_gelu",
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"initializer_factor": 1.0,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 3072,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 77,
|
| 17 |
+
"model_type": "clip_text_model",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 12,
|
| 20 |
+
"pad_token_id": 1,
|
| 21 |
+
"torch_dtype": "float16",
|
| 22 |
+
"transformers_version": "4.21.1",
|
| 23 |
+
"vocab_size": 49408
|
| 24 |
+
}
|
text_encoder/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:88bd85efb0f84e70521633f578715afb2873db4f2615fdfb1f66e99934715865
|
| 3 |
+
size 246184375
|
tokenizer/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer/special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|startoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "<|endoftext|>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": true,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"bos_token": {
|
| 4 |
+
"__type": "AddedToken",
|
| 5 |
+
"content": "<|startoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false
|
| 10 |
+
},
|
| 11 |
+
"do_lower_case": true,
|
| 12 |
+
"eos_token": {
|
| 13 |
+
"__type": "AddedToken",
|
| 14 |
+
"content": "<|endoftext|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": true,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false
|
| 19 |
+
},
|
| 20 |
+
"errors": "replace",
|
| 21 |
+
"model_max_length": 77,
|
| 22 |
+
"name_or_path": "./tokenizer",
|
| 23 |
+
"pad_token": "<|endoftext|>",
|
| 24 |
+
"special_tokens_map_file": "./special_tokens_map.json",
|
| 25 |
+
"tokenizer_class": "CLIPTokenizer",
|
| 26 |
+
"unk_token": {
|
| 27 |
+
"__type": "AddedToken",
|
| 28 |
+
"content": "<|endoftext|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false
|
| 33 |
+
}
|
| 34 |
+
}
|
tokenizer/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
unet/config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "UNet2DConditionModel",
|
| 3 |
+
"_diffusers_version": "0.2.3",
|
| 4 |
+
"_name_or_path": "./unet",
|
| 5 |
+
"act_fn": "silu",
|
| 6 |
+
"attention_head_dim": 8,
|
| 7 |
+
"block_out_channels": [
|
| 8 |
+
320,
|
| 9 |
+
640,
|
| 10 |
+
1280,
|
| 11 |
+
1280
|
| 12 |
+
],
|
| 13 |
+
"center_input_sample": false,
|
| 14 |
+
"cross_attention_dim": 768,
|
| 15 |
+
"down_block_types": [
|
| 16 |
+
"CrossAttnDownBlock2D",
|
| 17 |
+
"CrossAttnDownBlock2D",
|
| 18 |
+
"CrossAttnDownBlock2D",
|
| 19 |
+
"DownBlock2D"
|
| 20 |
+
],
|
| 21 |
+
"downsample_padding": 1,
|
| 22 |
+
"flip_sin_to_cos": true,
|
| 23 |
+
"freq_shift": 0,
|
| 24 |
+
"in_channels": 4,
|
| 25 |
+
"layers_per_block": 2,
|
| 26 |
+
"mid_block_scale_factor": 1,
|
| 27 |
+
"norm_eps": 1e-05,
|
| 28 |
+
"norm_num_groups": 32,
|
| 29 |
+
"out_channels": 4,
|
| 30 |
+
"sample_size": 64,
|
| 31 |
+
"up_block_types": [
|
| 32 |
+
"UpBlock2D",
|
| 33 |
+
"CrossAttnUpBlock2D",
|
| 34 |
+
"CrossAttnUpBlock2D",
|
| 35 |
+
"CrossAttnUpBlock2D"
|
| 36 |
+
]
|
| 37 |
+
}
|
unet/diffusion_pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d98edd280d5e040ee77f5802b8e3be3513de757335d1dedc4e495647e7c2d573
|
| 3 |
+
size 1719312805
|
vae/config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "AutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.2.3",
|
| 4 |
+
"_name_or_path": "./vae",
|
| 5 |
+
"act_fn": "silu",
|
| 6 |
+
"block_out_channels": [
|
| 7 |
+
128,
|
| 8 |
+
256,
|
| 9 |
+
512,
|
| 10 |
+
512
|
| 11 |
+
],
|
| 12 |
+
"down_block_types": [
|
| 13 |
+
"DownEncoderBlock2D",
|
| 14 |
+
"DownEncoderBlock2D",
|
| 15 |
+
"DownEncoderBlock2D",
|
| 16 |
+
"DownEncoderBlock2D"
|
| 17 |
+
],
|
| 18 |
+
"in_channels": 3,
|
| 19 |
+
"latent_channels": 4,
|
| 20 |
+
"layers_per_block": 2,
|
| 21 |
+
"out_channels": 3,
|
| 22 |
+
"sample_size": 512,
|
| 23 |
+
"up_block_types": [
|
| 24 |
+
"UpDecoderBlock2D",
|
| 25 |
+
"UpDecoderBlock2D",
|
| 26 |
+
"UpDecoderBlock2D",
|
| 27 |
+
"UpDecoderBlock2D"
|
| 28 |
+
]
|
| 29 |
+
}
|
vae/diffusion_pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:51c8904bc921e1e6f354b5fa8e99a1c82ead2f0540114de21557b8abfbb24ad0
|
| 3 |
+
size 167399505
|