fbaldassarri commited on
Commit
5393fdb
·
verified ·
1 Parent(s): 3467eee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -18,9 +18,9 @@ datasets:
18
  - tiiuae/falcon-refinedweb
19
  - bigcode/starcoderdata
20
  - togethercomputer/RedPajama-Data-1T
21
- model_name: OpenLLaMA 7B v2
22
  base_model:
23
- - openlm-research/open_llama_7b_v2
24
  inference: false
25
  model_creator: openlm-research
26
  pipeline_tag: text-generation
@@ -31,7 +31,7 @@ quantized_by: fbaldassarri
31
 
32
  ## Model Information
33
 
34
- Quantized version of [openlm-research/open_llama_7b_v2](https://huggingface.co/openlm-research/open_llama_7b_v2) using torch.float32 for quantization tuning.
35
  - 4 bits (INT4)
36
  - group size = 64
37
  - Asymmetrical Quantization
@@ -39,7 +39,7 @@ Quantized version of [openlm-research/open_llama_7b_v2](https://huggingface.co/o
39
 
40
  Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6
41
 
42
- Note: this INT4 version of open_llama_7b_v2 has been quantized to run inference through CPU.
43
 
44
  ## Replication Recipe
45
 
@@ -64,14 +64,14 @@ pip install -vvv --no-build-isolation -e .[cpu]
64
 
65
  ```
66
  from transformers import AutoModelForCausalLM, AutoTokenizer
67
- model_name = "openlm-research/open_llama_7b_v2"
68
  model = AutoModelForCausalLM.from_pretrained(model_name)
69
  tokenizer = AutoTokenizer.from_pretrained(model_name)
70
  from auto_round import AutoRound
71
  bits, group_size, sym, device, amp = 4, 64, False, 'cpu', False
72
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
73
  autoround.quantize()
74
- output_dir = "./AutoRound/openlm-research_open_llama_7b_v2-autoawq-int4-gs64-asym"
75
  autoround.save_quantized(output_dir, format='auto_awq', inplace=True)
76
  ```
77
 
 
18
  - tiiuae/falcon-refinedweb
19
  - bigcode/starcoderdata
20
  - togethercomputer/RedPajama-Data-1T
21
+ model_name: OpenLLaMA 3B v2
22
  base_model:
23
+ - openlm-research/open_llama_3b_v2
24
  inference: false
25
  model_creator: openlm-research
26
  pipeline_tag: text-generation
 
31
 
32
  ## Model Information
33
 
34
+ Quantized version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) using torch.float32 for quantization tuning.
35
  - 4 bits (INT4)
36
  - group size = 64
37
  - Asymmetrical Quantization
 
39
 
40
  Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6
41
 
42
+ Note: this INT4 version of open_llama_3b_v2 has been quantized to run inference through CPU.
43
 
44
  ## Replication Recipe
45
 
 
64
 
65
  ```
66
  from transformers import AutoModelForCausalLM, AutoTokenizer
67
+ model_name = "openlm-research/open_llama_3b_v2"
68
  model = AutoModelForCausalLM.from_pretrained(model_name)
69
  tokenizer = AutoTokenizer.from_pretrained(model_name)
70
  from auto_round import AutoRound
71
  bits, group_size, sym, device, amp = 4, 64, False, 'cpu', False
72
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
73
  autoround.quantize()
74
+ output_dir = "./AutoRound/openlm-research_open_llama_3b_v2-autoawq-int4-gs64-asym"
75
  autoround.save_quantized(output_dir, format='auto_awq', inplace=True)
76
  ```
77