Update README.md
Browse files
README.md
CHANGED
|
@@ -18,9 +18,9 @@ datasets:
|
|
| 18 |
- tiiuae/falcon-refinedweb
|
| 19 |
- bigcode/starcoderdata
|
| 20 |
- togethercomputer/RedPajama-Data-1T
|
| 21 |
-
model_name: OpenLLaMA
|
| 22 |
base_model:
|
| 23 |
-
- openlm-research/
|
| 24 |
inference: false
|
| 25 |
model_creator: openlm-research
|
| 26 |
pipeline_tag: text-generation
|
|
@@ -31,7 +31,7 @@ quantized_by: fbaldassarri
|
|
| 31 |
|
| 32 |
## Model Information
|
| 33 |
|
| 34 |
-
Quantized version of [openlm-research/
|
| 35 |
- 4 bits (INT4)
|
| 36 |
- group size = 64
|
| 37 |
- Asymmetrical Quantization
|
|
@@ -39,7 +39,7 @@ Quantized version of [openlm-research/open_llama_7b_v2](https://huggingface.co/o
|
|
| 39 |
|
| 40 |
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6
|
| 41 |
|
| 42 |
-
Note: this INT4 version of
|
| 43 |
|
| 44 |
## Replication Recipe
|
| 45 |
|
|
@@ -64,14 +64,14 @@ pip install -vvv --no-build-isolation -e .[cpu]
|
|
| 64 |
|
| 65 |
```
|
| 66 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 67 |
-
model_name = "openlm-research/
|
| 68 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 69 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 70 |
from auto_round import AutoRound
|
| 71 |
bits, group_size, sym, device, amp = 4, 64, False, 'cpu', False
|
| 72 |
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
|
| 73 |
autoround.quantize()
|
| 74 |
-
output_dir = "./AutoRound/openlm-
|
| 75 |
autoround.save_quantized(output_dir, format='auto_awq', inplace=True)
|
| 76 |
```
|
| 77 |
|
|
|
|
| 18 |
- tiiuae/falcon-refinedweb
|
| 19 |
- bigcode/starcoderdata
|
| 20 |
- togethercomputer/RedPajama-Data-1T
|
| 21 |
+
model_name: OpenLLaMA 3B v2
|
| 22 |
base_model:
|
| 23 |
+
- openlm-research/open_llama_3b_v2
|
| 24 |
inference: false
|
| 25 |
model_creator: openlm-research
|
| 26 |
pipeline_tag: text-generation
|
|
|
|
| 31 |
|
| 32 |
## Model Information
|
| 33 |
|
| 34 |
+
Quantized version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) using torch.float32 for quantization tuning.
|
| 35 |
- 4 bits (INT4)
|
| 36 |
- group size = 64
|
| 37 |
- Asymmetrical Quantization
|
|
|
|
| 39 |
|
| 40 |
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.6
|
| 41 |
|
| 42 |
+
Note: this INT4 version of open_llama_3b_v2 has been quantized to run inference through CPU.
|
| 43 |
|
| 44 |
## Replication Recipe
|
| 45 |
|
|
|
|
| 64 |
|
| 65 |
```
|
| 66 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 67 |
+
model_name = "openlm-research/open_llama_3b_v2"
|
| 68 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 69 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 70 |
from auto_round import AutoRound
|
| 71 |
bits, group_size, sym, device, amp = 4, 64, False, 'cpu', False
|
| 72 |
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
|
| 73 |
autoround.quantize()
|
| 74 |
+
output_dir = "./AutoRound/openlm-research_open_llama_3b_v2-autoawq-int4-gs64-asym"
|
| 75 |
autoround.save_quantized(output_dir, format='auto_awq', inplace=True)
|
| 76 |
```
|
| 77 |
|