Update README.md
Browse files
README.md
CHANGED
|
@@ -8,7 +8,7 @@ tags:
|
|
| 8 |
|
| 9 |
---
|
| 10 |
|
| 11 |
-
#
|
| 12 |
|
| 13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 14 |
|
|
@@ -26,9 +26,12 @@ Then you can use the model like this:
|
|
| 26 |
|
| 27 |
```python
|
| 28 |
from sentence_transformers import SentenceTransformer
|
| 29 |
-
sentences = ["
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
model = SentenceTransformer('
|
| 32 |
embeddings = model.encode(sentences)
|
| 33 |
print(embeddings)
|
| 34 |
```
|
|
@@ -51,11 +54,15 @@ def mean_pooling(model_output, attention_mask):
|
|
| 51 |
|
| 52 |
|
| 53 |
# Sentences we want sentence embeddings for
|
| 54 |
-
sentences = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# Load model from HuggingFace Hub
|
| 57 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
| 58 |
-
model = AutoModel.from_pretrained('
|
| 59 |
|
| 60 |
# Tokenize sentences
|
| 61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
@@ -85,7 +92,7 @@ The model was trained with the parameters:
|
|
| 85 |
|
| 86 |
**DataLoader**:
|
| 87 |
|
| 88 |
-
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length
|
| 89 |
```
|
| 90 |
{'batch_size': 16}
|
| 91 |
```
|
|
@@ -126,4 +133,4 @@ SentenceTransformer(
|
|
| 126 |
|
| 127 |
## Citing & Authors
|
| 128 |
|
| 129 |
-
<!--- Describe where people can find more information -->
|
|
|
|
| 8 |
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# indo-sbert-base
|
| 12 |
|
| 13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 14 |
|
|
|
|
| 26 |
|
| 27 |
```python
|
| 28 |
from sentence_transformers import SentenceTransformer
|
| 29 |
+
sentences = ["Ibukota Perancis adalah Paris",
|
| 30 |
+
"Menara Eifel terletak di Paris, Perancis",
|
| 31 |
+
"Pizza adalah makanan khas Italia",
|
| 32 |
+
"Saya kuliah di Carneige Melon University"]
|
| 33 |
|
| 34 |
+
model = SentenceTransformer('firqaaa/indo-sbert-finetuned-anli-id')
|
| 35 |
embeddings = model.encode(sentences)
|
| 36 |
print(embeddings)
|
| 37 |
```
|
|
|
|
| 54 |
|
| 55 |
|
| 56 |
# Sentences we want sentence embeddings for
|
| 57 |
+
sentences = ["Ibukota Perancis adalah Paris",
|
| 58 |
+
"Menara Eifel terletak di Paris, Perancis",
|
| 59 |
+
"Pizza adalah makanan khas Italia",
|
| 60 |
+
"Saya kuliah di Carneige Melon University"]
|
| 61 |
+
|
| 62 |
|
| 63 |
# Load model from HuggingFace Hub
|
| 64 |
+
tokenizer = AutoTokenizer.from_pretrained('firqaaa/indo-sbert-finetuned-anli-id')
|
| 65 |
+
model = AutoModel.from_pretrained('firqaaa/indo-sbert-finetuned-anli-id')
|
| 66 |
|
| 67 |
# Tokenize sentences
|
| 68 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
|
| 92 |
|
| 93 |
**DataLoader**:
|
| 94 |
|
| 95 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 19644 with parameters:
|
| 96 |
```
|
| 97 |
{'batch_size': 16}
|
| 98 |
```
|
|
|
|
| 133 |
|
| 134 |
## Citing & Authors
|
| 135 |
|
| 136 |
+
<!--- Describe where people can find more information -->
|