Uploading biomarker-agnostic model for Neurodiagnoses
Browse files- data/sample_data.csv +6 -0
- run_pipeline.py +76 -0
data/sample_data.csv
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
patient_id,age,sex,MMSE,plasma_biomarker_1,plasma_biomarker_2,MRI_region_1,MRI_region_2,clinical_score
|
| 2 |
+
1,68,M,27,0.45,0.30,1200,1300,5
|
| 3 |
+
2,73,F,25,0.50,0.35,1150,1280,7
|
| 4 |
+
3,70,M,28,0.40,0.28,1220,1350,4
|
| 5 |
+
4,65,F,30,0.38,0.25,1300,1400,3
|
| 6 |
+
5,72,M,26,0.55,0.40,1180,1320,6
|
run_pipeline.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
|
| 3 |
+
def load_and_clean_data(file_path):
|
| 4 |
+
# Read the CSV file
|
| 5 |
+
data = pd.read_csv(file_path)
|
| 6 |
+
|
| 7 |
+
# Simple cleaning: For example, check for missing values
|
| 8 |
+
data = data.dropna()
|
| 9 |
+
|
| 10 |
+
return data
|
| 11 |
+
|
| 12 |
+
def select_features(data):
|
| 13 |
+
# Detectar din谩micamente qu茅 columnas pertenecen a cada categor铆a
|
| 14 |
+
feature_blocks = {
|
| 15 |
+
"clinical": [],
|
| 16 |
+
"plasma": [],
|
| 17 |
+
"MRI": [],
|
| 18 |
+
"PET": [],
|
| 19 |
+
"functional": []
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
for column in data.columns:
|
| 23 |
+
col_name = column.lower()
|
| 24 |
+
if "plasma" in col_name:
|
| 25 |
+
feature_blocks["plasma"].append(column)
|
| 26 |
+
elif "mri" in col_name:
|
| 27 |
+
feature_blocks["MRI"].append(column)
|
| 28 |
+
elif "pet" in col_name:
|
| 29 |
+
feature_blocks["PET"].append(column)
|
| 30 |
+
elif "clinical" in col_name or column in ["age", "sex", "education"]:
|
| 31 |
+
feature_blocks["clinical"].append(column)
|
| 32 |
+
elif "fmri" in col_name or "eeg" in col_name:
|
| 33 |
+
feature_blocks["functional"].append(column)
|
| 34 |
+
|
| 35 |
+
# Seleccionar autom谩ticamente todas las variables detectadas como X (entrada del modelo)
|
| 36 |
+
X = data[feature_blocks["plasma"] + feature_blocks["MRI"] + feature_blocks["PET"] + feature_blocks["functional"]]
|
| 37 |
+
|
| 38 |
+
# Usamos la 煤ltima columna como variable objetivo (y), asegur谩ndonos de que no sea parte de X
|
| 39 |
+
y = data.iloc[:, -1]
|
| 40 |
+
|
| 41 |
+
return X, y
|
| 42 |
+
|
| 43 |
+
def train_model(X, y):
|
| 44 |
+
from sklearn.linear_model import LinearRegression
|
| 45 |
+
model = LinearRegression()
|
| 46 |
+
model.fit(X, y)
|
| 47 |
+
return model
|
| 48 |
+
|
| 49 |
+
def evaluate_model(model, X, y):
|
| 50 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
| 51 |
+
predictions = model.predict(X)
|
| 52 |
+
mse = mean_squared_error(y, predictions)
|
| 53 |
+
r2 = r2_score(y, predictions)
|
| 54 |
+
print("Mean Squared Error:", mse)
|
| 55 |
+
print("R-squared:", r2)
|
| 56 |
+
|
| 57 |
+
def run_pipeline():
|
| 58 |
+
# Update the file path to where you saved sample_data.csv
|
| 59 |
+
file_path = "data/sample_data.csv"
|
| 60 |
+
|
| 61 |
+
# Step 1: Load and clean data
|
| 62 |
+
data = load_and_clean_data(file_path)
|
| 63 |
+
print("Data Loaded:")
|
| 64 |
+
print(data.head())
|
| 65 |
+
|
| 66 |
+
# Step 2: Select features
|
| 67 |
+
X, y = select_features(data)
|
| 68 |
+
|
| 69 |
+
# Step 3: Train the model
|
| 70 |
+
model = train_model(X, y)
|
| 71 |
+
|
| 72 |
+
# Step 4: Evaluate the model
|
| 73 |
+
evaluate_model(model, X, y)
|
| 74 |
+
|
| 75 |
+
if __name__ == "__main__":
|
| 76 |
+
run_pipeline()
|