File size: 6,478 Bytes
fd4b932 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# -*- coding: utf-8 -*-
""" MEye: Semantic Segmentation """
import argparse
import os
os.sys.path += ['expman', 'models/deeplab']
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import math
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflowjs as tfjs
from tensorflow.keras import backend as K
from tensorflow.keras.models import load_model
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler, CSVLogger
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_curve, auc, precision_recall_curve, average_precision_score
from adabelief_tf import AdaBeliefOptimizer
from tqdm.keras import TqdmCallback
from tqdm import tqdm
from functools import partial
from dataloader import get_loader, load_datasets
from deeplabv3p.models.deeplabv3p_mobilenetv3 import hard_swish
from models.deeplab import build_model, AVAILABLE_BACKBONES
from utils import visualize
from expman import Experiment
import evaluate
def main(args):
exp = Experiment(args, ignore=('epochs', 'resume'))
print(exp)
np.random.seed(args.seed)
tf.random.set_seed(args.seed)
data = load_datasets(args.data)
# TRAIN/VAL/TEST SPLIT
if args.split == 'subjects': # by SUBJECTS
val_subjects = (6, 9, 11, 13, 16, 28, 30, 48, 49)
test_subjects = (3, 4, 19, 38, 45, 46, 51, 52)
train_data = data[~data['sub'].isin(val_subjects + test_subjects)]
val_data = data[data['sub'].isin(val_subjects)]
test_data = data[data['sub'].isin(test_subjects)]
elif args.split == 'random': # 70-20-10 %
train_data, valtest_data = train_test_split(data, test_size=.3, shuffle=True)
val_data, test_data = train_test_split(valtest_data, test_size=.33)
lengths = map(len, (data, train_data, val_data, test_data))
print("Total: {} - Train / Val / Test: {} / {} / {}".format(*lengths))
x_shape = (args.resolution, args.resolution, 1)
y_shape = (args.resolution, args.resolution, 1)
train_gen, _ = get_loader(train_data, batch_size=args.batch_size, shuffle=True, augment=True, x_shape=x_shape)
val_gen, val_categories = get_loader(val_data, batch_size=args.batch_size, x_shape=x_shape)
# test_gen, test_categories = get_loader(test_data, batch_size=1, x_shape=x_shape)
log = exp.path_to('log.csv')
# weights_only checkpoints
best_weights_path = exp.path_to('best_weights.h5')
best_mask_weights_path = exp.path_to('best_weights_mask.h5')
# whole model checkpoints
best_ckpt_path = exp.path_to('best_model.h5')
last_ckpt_path = exp.path_to('last_model.h5')
if args.resume and os.path.exists(last_ckpt_path):
custom_objects={'AdaBeliefOptimizer': AdaBeliefOptimizer, 'iou_coef': evaluate.iou_coef, 'dice_coef': evaluate.dice_coef, 'hard_swish': hard_swish}
model = tf.keras.models.load_model(last_ckpt_path, custom_objects=custom_objects)
optimizer = model.optimizer
initial_epoch = len(pd.read_csv(log))
else:
config = vars(args)
model = build_model(x_shape, y_shape, config)
optimizer = AdaBeliefOptimizer(learning_rate=args.lr, print_change_log=False)
initial_epoch = 0
model.compile(optimizer=optimizer,
loss='binary_crossentropy',
metrics={'mask': [evaluate.iou_coef, evaluate.dice_coef],
'tags': 'binary_accuracy'})
model_stopped_file = exp.path_to('early_stopped.txt')
need_training = not os.path.exists(model_stopped_file) and initial_epoch < args.epochs
if need_training:
best_checkpointer = ModelCheckpoint(best_weights_path, monitor='val_loss', save_best_only=True, save_weights_only=True)
best_mask_checkpointer = ModelCheckpoint(best_mask_weights_path, monitor='val_mask_dice_coef', mode='max', save_best_only=True, save_weights_only=True)
last_checkpointer = ModelCheckpoint(last_ckpt_path, save_best_only=False, save_weights_only=False)
logger = CSVLogger(log, append=args.resume)
progress = TqdmCallback(verbose=1, initial=initial_epoch, dynamic_ncols=True)
early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_mask_dice_coef', mode='max', patience=100)
callbacks = [best_checkpointer, best_mask_checkpointer, last_checkpointer, logger, progress, early_stop]
model.fit(train_gen,
epochs=args.epochs,
callbacks=callbacks,
initial_epoch=initial_epoch,
steps_per_epoch=len(train_gen),
validation_data=val_gen,
validation_steps=len(val_gen),
verbose=False)
if model.stop_training:
open(model_stopped_file, 'w').close()
tf.keras.models.save_model(model, best_ckpt_path, include_optimizer=False)
# evaluation on test set
evaluate.evaluate(exp, force=need_training)
# save best snapshot in SavedModel format
model.load_weights(best_mask_weights_path)
best_savedmodel_path = exp.path_to('best_savedmodel')
model.save(best_savedmodel_path, save_traces=True)
# export to tfjs (Layers model)
tfjs_model_dir = exp.path_to('tfjs')
tfjs.converters.save_keras_model(model, tfjs_model_dir)
if __name__ == '__main__':
default_data = ['data/NN_human_mouse_eyes']
parser = argparse.ArgumentParser(description='Train DeepLab models')
# data params
parser.add_argument('-d', '--data', nargs='+', default=default_data, help='Data directory (may be multiple)')
parser.add_argument('--split', default='random', choices=('random', 'subjects'), help='How to split data')
parser.add_argument('-r', '--resolution', type=int, default=128, help='Input image resolution')
# model params
parser.add_argument('-a', '--backbone', default='resnet50', choices=AVAILABLE_BACKBONES, help='Backbone architecture')
# train params
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('-b', '--batch-size', type=int, default=32, help='Batch size')
parser.add_argument('-e', '--epochs', type=int, default=500, help='Number of training epochs')
parser.add_argument('-s', '--seed', type=int, default=23, help='Random seed')
parser.add_argument('--resume', default=False, action='store_true', help='Resume training')
args = parser.parse_args()
main(args)
|