gemma-3-12b-it-int4-awq / convert_flax.py
gaunernst's picture
update script
6fc5e4e
raw
history blame
10.9 kB
import argparse
import json
from pathlib import Path
import jax
import jax.numpy as jnp
import numpy as np
import orbax.checkpoint as ocp
from safetensors.flax import save_file
from tqdm import tqdm
SIGLIP_PREFIX = "SigLiPFromPatches_0/siglip_encoder"
def flatten(x: np.ndarray, start: int = 0, end: int = -1):
if start < 0:
start += x.ndim
if end < 0:
end += x.ndim
new_shape = x.shape[:start] + (-1,) + x.shape[end + 1 :]
return x.reshape(new_shape)
def unflatten(x: np.ndarray, dim: int, sizes: tuple[int, ...]):
new_shape = x.shape[:dim] + tuple(sizes) + x.shape[dim + 1 :]
return x.reshape(new_shape)
# correct quantization parameters mean quantization error = 0 (or close to 0)
def check_groups(groups: np.ndarray, scales: np.ndarray, dim: int):
# groups: (a, b, c, 32, d, e, f)
# scales: (a, b, c, 1, d, e, f)
inv_scale = 1.0 / scales.clip(1e-12)
q_group = np.round(groups * inv_scale)
max_diff = np.abs(q_group * scales - groups).max(dim, keepdims=True)
return max_diff < 1e-6, max_diff
def find_scales(w: np.ndarray, dim: int):
w = unflatten(w, dim, (-1, 32))
group_range = w.max(dim + 1, keepdims=True) - w.min(dim + 1, keepdims=True)
scales = np.zeros_like(group_range)
for q in range(15, 0, -1):
try_scale = group_range / q
ok, _ = check_groups(w, try_scale, dim + 1)
scales[ok] = try_scale[ok]
ok, _ = check_groups(w, scales, dim + 1)
assert ok.all()
return scales.squeeze(dim + 1)
def convert_siglip(params, num_layers: int):
state_dict = dict()
def convert_layer(prefix: str, layer: dict[str, np.ndarray]):
bias = layer["bias"]
if "kernel" in layer:
w = layer["kernel"]
if w.ndim == 2: # linear layer
w = w.T
elif w.ndim == 3: # attn projection
# qkv projection - (dim, num_heads, head_dim)
if bias.ndim == 2:
w = flatten(w, 1, 2).T
bias = bias.reshape(-1)
# o projection - (num_heads, head_dim, dim)
elif bias.ndim == 1:
w = flatten(w, 0, 1).T
elif w.ndim == 4: # conv2d layer
w = w.transpose(3, 2, 0, 1)
else:
raise RuntimeError(f"Unsupported {w.shape=}")
elif "scale" in layer: # layer norm
w = layer["scale"]
else:
raise RuntimeError
state_dict[f"{prefix}weight"] = w
state_dict[f"{prefix}bias"] = bias
convert_layer("embeddings.patch_embedding.", params[f"{SIGLIP_PREFIX}/embedding"])
state_dict["embeddings.position_embedding.weight"] = params[SIGLIP_PREFIX]["pos_embedding"].squeeze(0)
convert_layer("post_layernorm.", params[f"{SIGLIP_PREFIX}/Transformer/encoder_norm"])
for layer_idx in range(num_layers):
prefix = f"encoder.layers.{layer_idx}."
layer_prefix = f"{SIGLIP_PREFIX}/Transformer/encoderblock_{layer_idx}/"
convert_layer(f"{prefix}layer_norm1.", params[f"{layer_prefix}LayerNorm_0"])
convert_layer(f"{prefix}layer_norm2.", params[f"{layer_prefix}LayerNorm_1"])
attn_prefix = f"{layer_prefix}MultiHeadDotProductAttention_0/"
convert_layer(f"{prefix}self_attn.q_proj.", params[f"{attn_prefix}query"])
convert_layer(f"{prefix}self_attn.k_proj.", params[f"{attn_prefix}key"])
convert_layer(f"{prefix}self_attn.v_proj.", params[f"{attn_prefix}value"])
convert_layer(f"{prefix}self_attn.out_proj.", params[f"{attn_prefix}out"])
mlp_prefix = f"{layer_prefix}MlpBlock_0/"
convert_layer(f"{prefix}mlp.fc1.", params[f"{mlp_prefix}Dense_0"])
convert_layer(f"{prefix}mlp.fc2.", params[f"{mlp_prefix}Dense_1"])
return state_dict
# convert to HF format first, then apply quantization
def convert_to_hf(path: Path):
path = path.absolute() # orbax only works with absolute path
ckpt = ocp.StandardCheckpointer()
metadata = dict(ckpt.metadata(path))
metadata = jax.tree.map(ocp.utils.to_shape_dtype_struct, metadata)
num_layers = num_siglip_layers = 0
while f"transformer/layer_{num_layers}/attn/_key_norm" in metadata:
num_layers += 1
while f"{SIGLIP_PREFIX}/Transformer/encoderblock_{num_siglip_layers}/LayerNorm_0" in metadata:
num_siglip_layers += 1
print(f"{num_layers=}")
print(f"{num_siglip_layers=}")
# NOTE: all gemma3 models use tied embeddings, even for the 27B version.
params = ckpt.restore(path)
state_dict = dict()
if num_siglip_layers > 0:
# HF append unused tokens for no reason???
embed = params["transformer/embedder"]["input_embedding"]
params["transformer/embedder"]["input_embedding"] = np.pad(embed, ((0, 64), (0, 0)))
gemma_prefix = "language_model."
prefix = "multi_modal_projector.mm_"
jax_prefix = "transformer/embedder/"
state_dict[f"{prefix}input_projection_weight"] = params[f"{jax_prefix}mm_input_projection"]["w"]
state_dict[f"{prefix}soft_emb_norm.weight"] = params[f"{jax_prefix}mm_soft_embedding_norm"]["scale"]
else:
gemma_prefix = ""
state_dict[f"{gemma_prefix}model.embed_tokens.weight"] = params["transformer/embedder"]["input_embedding"]
state_dict[f"{gemma_prefix}model.norm.weight"] = params["transformer/final_norm"]["scale"]
yield state_dict
for layer_idx in range(num_layers):
jax_prefix = f"transformer/layer_{layer_idx}/"
state_dict = dict()
prefix = f"{gemma_prefix}model.layers.{layer_idx}."
state_dict[f"{prefix}input_layernorm.weight"] = params[f"{jax_prefix}pre_attention_norm"]["scale"]
state_dict[f"{prefix}post_attention_layernorm.weight"] = params[f"{jax_prefix}post_attention_norm"]["scale"]
state_dict[f"{prefix}pre_feedforward_layernorm.weight"] = params[f"{jax_prefix}pre_ffw_norm"]["scale"]
state_dict[f"{prefix}post_feedforward_layernorm.weight"] = params[f"{jax_prefix}post_ffw_norm"]["scale"]
prefix = f"{gemma_prefix}model.layers.{layer_idx}.self_attn."
jax_prefix = f"transformer/layer_{layer_idx}/attn/"
state_dict[f"{prefix}q_norm.weight"] = params[f"{jax_prefix}_query_norm"]["scale"]
state_dict[f"{prefix}k_norm.weight"] = params[f"{jax_prefix}_key_norm"]["scale"]
# (num_heads, hidden_size, head_dim) -> (num_heads * head_dim, hidden_size)
state_dict[f"{prefix}q_proj.weight"] = flatten(params[f"{jax_prefix}q_einsum"]["w"].transpose(0, 2, 1), end=1)
state_dict[f"{prefix}k_proj.weight"] = flatten(
params[f"{jax_prefix}kv_einsum"]["w"][0].transpose(0, 2, 1), end=1
)
state_dict[f"{prefix}v_proj.weight"] = flatten(
params[f"{jax_prefix}kv_einsum"]["w"][1].transpose(0, 2, 1), end=1
)
# (num_heads, head_dim, hidden_size) -> (hidden_size, num_heads * head_dim)
state_dict[f"{prefix}o_proj.weight"] = flatten(params[f"{jax_prefix}attn_vec_einsum"]["w"], end=1).T
prefix = f"{gemma_prefix}model.layers.{layer_idx}.mlp."
jax_prefix = f"transformer/layer_{layer_idx}/mlp/"
state_dict[f"{prefix}gate_proj.weight"] = params[f"{jax_prefix}gating_einsum"]["w"][0]
state_dict[f"{prefix}up_proj.weight"] = params[f"{jax_prefix}gating_einsum"]["w"][1]
state_dict[f"{prefix}down_proj.weight"] = params[f"{jax_prefix}linear"]["w"].T
yield state_dict
# vision tower
if num_siglip_layers > 0:
siglip_state_dict = convert_siglip(params, num_siglip_layers)
for k, v in siglip_state_dict.items():
state_dict[f"vision_tower.vision_model.{k}"] = v
yield state_dict
def convert_awq(state_dict: dict[str, np.ndarray]):
awq_state_dict = dict()
for k, v in state_dict.items():
if (
k.endswith("model.embed_tokens.weight") # AWQ doesn't support INT4 embeddings
or k.startswith(("vision_tower", "multi_modal_projector")) # vision tower is not quantized
or v.ndim == 1
):
awq_state_dict[k] = v.astype(jnp.bfloat16)
continue
assert v.ndim == 2
v = v.T # AWQ transpose the weight
K, N = v.shape
scales = find_scales(v, dim=0) # (K/32, N)
inv_scale = 1 / scales.clip(1e-12)
qweight = np.round(v.reshape(K // 32, 32, N) * inv_scale[:, None])
# AWQ is actually UINT4 (instead of INT4)
# hence, we will shift qweight up by 8 (even though Google AQT only uses [-7,7])
# and set zero_point = 8
qweight = (qweight + 8).astype(np.uint32)
# AWQ pack 8 int4 into UINT32 in the following layout (from high bits to low bits)
# [7 5 3 1 6 4 2 0] along the 2nd dim
qweight = qweight.reshape(K, N // 8, 8)
qweight_packed = (
(qweight[..., 7] << (7 * 4))
| (qweight[..., 5] << (6 * 4))
| (qweight[..., 3] << (5 * 4))
| (qweight[..., 1] << (4 * 4))
| (qweight[..., 6] << (3 * 4))
| (qweight[..., 4] << (2 * 4))
| (qweight[..., 2] << (1 * 4))
| (qweight[..., 0] << (0 * 4))
)
qweight_packed = qweight_packed.view(np.int32).reshape(K, N // 8)
prefix = k.removesuffix(".weight")
awq_state_dict[f"{prefix}.qweight"] = qweight_packed
awq_state_dict[f"{prefix}.qzeros"] = np.full((K // 32, N // 8), 0x8888_8888, dtype=np.uint32).view(np.int32)
awq_state_dict[f"{prefix}.scales"] = scales.astype(jnp.bfloat16)
return awq_state_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_dir", required=True, type=Path)
parser.add_argument("--save_dir", required=True, type=Path)
args = parser.parse_args()
args.save_dir.mkdir(parents=True, exist_ok=True)
total_size = 0
weight_map = dict()
state_dict = dict()
size = 0
shard_idx = 0
filename = f"model-{shard_idx + 1:05d}.safetensors"
for sub_state_dict in tqdm(convert_to_hf(args.ckpt_dir)):
sub_state_dict = convert_awq(sub_state_dict)
new_size = sum(v.nbytes for v in sub_state_dict.values())
if size + new_size > 5e9:
save_file(state_dict, args.save_dir / filename)
state_dict = dict()
size = 0
shard_idx += 1
filename = f"model-{shard_idx + 1:05d}.safetensors"
# assume that new_size < 5e9
size += new_size
total_size += new_size
for k, v in sub_state_dict.items():
state_dict[k] = v
weight_map[k] = filename
save_file(state_dict, args.save_dir / filename)
json.dump(
dict(metadata=dict(total_size=total_size), weight_map=weight_map),
open(args.save_dir / "model.safetensors.index.json", "w"),
)