|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
class FM4BioConfig(PretrainedConfig): |
|
|
model_type = "fm4bio" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size=128, |
|
|
hidden_size=1024, |
|
|
num_hidden_layers=24, |
|
|
num_attention_heads=16, |
|
|
intermediate_size=4096, |
|
|
hidden_act="swiglu", |
|
|
hidden_dropout_prob=0.0, |
|
|
attention_probs_dropout_prob=0.0, |
|
|
max_position_embeddings=2048, |
|
|
type_vocab_size=2, |
|
|
initializer_range=0.02, |
|
|
layer_norm_eps=1e-05, |
|
|
pad_token_id=0, |
|
|
add_linear_bias=True, |
|
|
position_embedding_type="rope", |
|
|
normalization_type="RMSNorm", |
|
|
use_cache=True, |
|
|
rotary_percent=1.0, |
|
|
seq_len_interpolation_factor=None, |
|
|
moe=False, |
|
|
num_experts=0, |
|
|
experts_per_token=0, |
|
|
use_lm_head=True, |
|
|
tie_word_embeddings=True, |
|
|
output_vocab_size: int = None, |
|
|
gradient_checkpointing=False, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|
|
|
|
self.vocab_size = vocab_size |
|
|
self.hidden_size = hidden_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.hidden_act = hidden_act |
|
|
self.intermediate_size = intermediate_size |
|
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.type_vocab_size = type_vocab_size |
|
|
self.initializer_range = initializer_range |
|
|
self.layer_norm_eps = layer_norm_eps |
|
|
self.position_embedding_type = position_embedding_type |
|
|
self.use_cache = use_cache |
|
|
self.add_linear_bias = add_linear_bias |
|
|
assert normalization_type in [ |
|
|
"RMSNorm", |
|
|
"LayerNorm", |
|
|
], "normalization_type must be 'RMSNorm' or 'LayerNorm'" |
|
|
self.normalization_type = normalization_type |
|
|
self.rotary_percent = rotary_percent |
|
|
self.seq_len_interpolation_factor = seq_len_interpolation_factor |
|
|
self.moe = moe |
|
|
self.num_experts = num_experts |
|
|
self.experts_per_token = experts_per_token |
|
|
self.use_lm_head = use_lm_head |
|
|
self.tie_word_embeddings = tie_word_embeddings |
|
|
self.output_vocab_size = output_vocab_size |
|
|
self.gradient_checkpointing = gradient_checkpointing |