Update README.md
Browse files
README.md
CHANGED
|
@@ -36,17 +36,19 @@ It achieves the following results on the evaluation set:
|
|
| 36 |
|
| 37 |
## Model description
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
|
| 43 |
-
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
## Training procedure
|
| 50 |
|
| 51 |
### Training hyperparameters
|
| 52 |
|
|
|
|
| 36 |
|
| 37 |
## Model description
|
| 38 |
|
| 39 |
+
This model was created by importing the dataset of the photos of flowers into
|
| 40 |
+
Google Colab from kaggle here: https://www.kaggle.com/datasets/l3llff/flowers.
|
| 41 |
+
I then used the image classification tutorial here:
|
| 42 |
+
https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb
|
| 43 |
|
| 44 |
+
obtaining the following notebook:
|
| 45 |
|
| 46 |
+
https://colab.research.google.com/drive/1bapCEz4vkDd16Ax9jb5oHGa85PeuyZVW?usp=sharing
|
| 47 |
|
| 48 |
+
The possible classified flowers are:
|
| 49 |
+
'common_daisy', 'rose', 'california_poppy', 'iris', 'astilbe', 'carnation',
|
| 50 |
+
'tulip', 'sunflower', 'coreopsis', 'magnolia', 'water_lily', 'bellflower',
|
| 51 |
+
'daffodil', 'calendula', 'dandelion', 'black_eyed_susan'
|
|
|
|
| 52 |
|
| 53 |
### Training hyperparameters
|
| 54 |
|