File size: 12,936 Bytes
34d1f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# Benchmarks
Here we benchmark the training and testing speed of models in MMDetection3D,
with some other open source 3D detection codebases.
## Settings
- Hardwares: 8 NVIDIA Tesla V100 (32G) GPUs, Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
- Software: Python 3.7, CUDA 10.1, cuDNN 7.6.5, PyTorch 1.3, numba 0.48.0.
- Model: Since all the other codebases implements different models, we compare the corresponding models including SECOND, PointPillars, Part-A2, and VoteNet with them separately.
- Metrics: We use the average throughput in iterations of the entire training run and skip the first 50 iterations of each epoch to skip GPU warmup time.
## Main Results
We compare the training speed (samples/s) with other codebases if they implement the similar models. The results are as below, the greater the numbers in the table, the faster of the training process. The models that are not supported by other codebases are marked by `×`.
| Methods | MMDetection3D | OpenPCDet | votenet | Det3D |
| :-----------------: | :-----------: | :-------: | :-----: | :---: |
| VoteNet | 358 | × | 77 | × |
| PointPillars-car | 141 | × | × | 140 |
| PointPillars-3class | 107 | 44 | × | × |
| SECOND | 40 | 30 | × | × |
| Part-A2 | 17 | 14 | × | × |
## Details of Comparison
### Modification for Calculating Speed
- __MMDetection3D__: We try to use as similar settings as those of other codebases as possible using [benchmark configs](https://github.com/open-mmlab/MMDetection3D/blob/main/configs/benchmark).
- __Det3D__: For comparison with Det3D, we use the commit [519251e](https://github.com/poodarchu/Det3D/tree/519251e72a5c1fdd58972eabeac67808676b9bb7).
- __OpenPCDet__: For comparison with OpenPCDet, we use the commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2).
For training speed, we add code to record the running time in the file `./tools/train_utils/train_utils.py`. We calculate the speed of each epoch, and report the average speed of all the epochs.
<details>
<summary>
(diff to make it use the same method for benchmarking speed - click to expand)
</summary>
```diff
diff --git a/tools/train_utils/train_utils.py b/tools/train_utils/train_utils.py
index 91f21dd..021359d 100644
--- a/tools/train_utils/train_utils.py
+++ b/tools/train_utils/train_utils.py
@@ -2,6 +2,7 @@ import torch
import os
import glob
import tqdm
+import datetime
from torch.nn.utils import clip_grad_norm_
@@ -13,7 +14,10 @@ def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, ac
if rank == 0:
pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar, desc='train', dynamic_ncols=True)
+ start_time = None
for cur_it in range(total_it_each_epoch):
+ if cur_it > 49 and start_time is None:
+ start_time = datetime.datetime.now()
try:
batch = next(dataloader_iter)
except StopIteration:
@@ -55,9 +59,11 @@ def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, ac
tb_log.add_scalar('learning_rate', cur_lr, accumulated_iter)
for key, val in tb_dict.items():
tb_log.add_scalar('train_' + key, val, accumulated_iter)
+ endtime = datetime.datetime.now()
+ speed = (endtime - start_time).seconds / (total_it_each_epoch - 50)
if rank == 0:
pbar.close()
- return accumulated_iter
+ return accumulated_iter, speed
def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_cfg,
@@ -65,6 +71,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
lr_warmup_scheduler=None, ckpt_save_interval=1, max_ckpt_save_num=50,
merge_all_iters_to_one_epoch=False):
accumulated_iter = start_iter
+ speeds = []
with tqdm.trange(start_epoch, total_epochs, desc='epochs', dynamic_ncols=True, leave=(rank == 0)) as tbar:
total_it_each_epoch = len(train_loader)
if merge_all_iters_to_one_epoch:
@@ -82,7 +89,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
cur_scheduler = lr_warmup_scheduler
else:
cur_scheduler = lr_scheduler
- accumulated_iter = train_one_epoch(
+ accumulated_iter, speed = train_one_epoch(
model, optimizer, train_loader, model_func,
lr_scheduler=cur_scheduler,
accumulated_iter=accumulated_iter, optim_cfg=optim_cfg,
@@ -91,7 +98,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
total_it_each_epoch=total_it_each_epoch,
dataloader_iter=dataloader_iter
)
-
+ speeds.append(speed)
# save trained model
trained_epoch = cur_epoch + 1
if trained_epoch % ckpt_save_interval == 0 and rank == 0:
@@ -107,6 +114,8 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
save_checkpoint(
checkpoint_state(model, optimizer, trained_epoch, accumulated_iter), filename=ckpt_name,
)
+ print(speed)
+ print(f'*******{sum(speeds) / len(speeds)}******')
def model_state_to_cpu(model_state):
```
</details>
### VoteNet
- __MMDetection3D__: With release v0.1.0, run
```bash
./tools/dist_train.sh configs/votenet/votenet_8xb16_sunrgbd-3d.py 8 --no-validate
```
- __votenet__: At commit [2f6d6d3](https://github.com/facebookresearch/votenet/tree/2f6d6d36ff98d96901182e935afe48ccee82d566), run
```bash
python train.py --dataset sunrgbd --batch_size 16
```
Then benchmark the test speed by running
```bash
python eval.py --dataset sunrgbd --checkpoint_path log_sunrgbd/checkpoint.tar --batch_size 1 --dump_dir eval_sunrgbd --cluster_sampling seed_fps --use_3d_nms --use_cls_nms --per_class_proposal
```
Note that eval.py is modified to compute inference time.
<details>
<summary>
(diff to benchmark the similar models - click to expand)
</summary>
```diff
diff --git a/eval.py b/eval.py
index c0b2886..04921e9 100644
--- a/eval.py
+++ b/eval.py
@@ -10,6 +10,7 @@ import os
import sys
import numpy as np
from datetime import datetime
+import time
import argparse
import importlib
import torch
@@ -28,7 +29,7 @@ parser.add_argument('--checkpoint_path', default=None, help='Model checkpoint pa
parser.add_argument('--dump_dir', default=None, help='Dump dir to save sample outputs [default: None]')
parser.add_argument('--num_point', type=int, default=20000, help='Point Number [default: 20000]')
parser.add_argument('--num_target', type=int, default=256, help='Point Number [default: 256]')
-parser.add_argument('--batch_size', type=int, default=8, help='Batch Size during training [default: 8]')
+parser.add_argument('--batch_size', type=int, default=1, help='Batch Size during training [default: 8]')
parser.add_argument('--vote_factor', type=int, default=1, help='Number of votes generated from each seed [default: 1]')
parser.add_argument('--cluster_sampling', default='vote_fps', help='Sampling strategy for vote clusters: vote_fps, seed_fps, random [default: vote_fps]')
parser.add_argument('--ap_iou_thresholds', default='0.25,0.5', help='A list of AP IoU thresholds [default: 0.25,0.5]')
@@ -132,6 +133,7 @@ CONFIG_DICT = {'remove_empty_box': (not FLAGS.faster_eval), 'use_3d_nms': FLAGS.
# ------------------------------------------------------------------------- GLOBAL CONFIG END
def evaluate_one_epoch():
+ time_list = list()
stat_dict = {}
ap_calculator_list = [APCalculator(iou_thresh, DATASET_CONFIG.class2type) \
for iou_thresh in AP_IOU_THRESHOLDS]
@@ -144,6 +146,8 @@ def evaluate_one_epoch():
# Forward pass
inputs = {'point_clouds': batch_data_label['point_clouds']}
+ torch.cuda.synchronize()
+ start_time = time.perf_counter()
with torch.no_grad():
end_points = net(inputs)
@@ -161,6 +165,12 @@ def evaluate_one_epoch():
batch_pred_map_cls = parse_predictions(end_points, CONFIG_DICT)
batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT)
+ torch.cuda.synchronize()
+ elapsed = time.perf_counter() - start_time
+ time_list.append(elapsed)
+
+ if len(time_list==200):
+ print("average inference time: %4f"%(sum(time_list[5:])/len(time_list[5:])))
for ap_calculator in ap_calculator_list:
ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls)
```
### PointPillars-car
- __MMDetection3D__: With release v0.1.0, run
```bash
./tools/dist_train.sh configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-3d-car.py 8 --no-validate
```
- __Det3D__: At commit [519251e](https://github.com/poodarchu/Det3D/tree/519251e72a5c1fdd58972eabeac67808676b9bb7), use `kitti_point_pillars_mghead_syncbn.py` and run
```bash
./tools/scripts/train.sh --launcher=slurm --gpus=8
```
Note that the config in train.sh is modified to train point pillars.
<details>
<summary>
(diff to benchmark the similar models - click to expand)
</summary>
```diff
diff --git a/tools/scripts/train.sh b/tools/scripts/train.sh
index 3a93f95..461e0ea 100755
--- a/tools/scripts/train.sh
+++ b/tools/scripts/train.sh
@@ -16,9 +16,9 @@ then
fi
# Voxelnet
-python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/ kitti_car_vfev3_spmiddlefhd_rpn1_mghead_syncbn.py --work_dir=$SECOND_WORK_DIR
+# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/ kitti_car_vfev3_spmiddlefhd_rpn1_mghead_syncbn.py --work_dir=$SECOND_WORK_DIR
# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/cbgs/configs/ nusc_all_vfev3_spmiddleresnetfhd_rpn2_mghead_syncbn.py --work_dir=$NUSC_CBGS_WORK_DIR
# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/ lyft_all_vfev3_spmiddleresnetfhd_rpn2_mghead_syncbn.py --work_dir=$LYFT_CBGS_WORK_DIR
# PointPillars
-# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py ./examples/point_pillars/configs/ original_pp_mghead_syncbn_kitti.py --work_dir=$PP_WORK_DIR
+python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py ./examples/point_pillars/configs/ kitti_point_pillars_mghead_syncbn.py
```
</details>
### PointPillars-3class
- __MMDetection3D__: With release v0.1.0, run
```bash
./tools/dist_train.sh configs/benchmark/hv_pointpillars_secfpn_4x8_80e_pcdet_kitti-3d-3class.py 8 --no-validate
```
- __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2), run
```bash
cd tools
sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8 --cfg_file ./cfgs/kitti_models/pointpillar.yaml --batch_size 32 --workers 32 --epochs 80
```
### SECOND
For SECOND, we mean the [SECONDv1.5](https://github.com/traveller59/second.pytorch/blob/master/second/configs/all.fhd.config) that was first implemented in [second.Pytorch](https://github.com/traveller59/second.pytorch). Det3D's implementation of SECOND uses its self-implemented Multi-Group Head, so its speed is not compatible with other codebases.
- __MMDetection3D__: With release v0.1.0, run
```bash
./tools/dist_train.sh configs/benchmark/hv_second_secfpn_4x8_80e_pcdet_kitti-3d-3class.py 8 --no-validate
```
- __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2), run
```bash
cd tools
sh ./scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8 --cfg_file ./cfgs/kitti_models/second.yaml --batch_size 32 --workers 32 --epochs 80
```
### Part-A2
- __MMDetection3D__: With release v0.1.0, run
```bash
./tools/dist_train.sh configs/benchmark/hv_PartA2_secfpn_4x8_cyclic_80e_pcdet_kitti-3d-3class.py 8 --no-validate
```
- __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2), train the model by running
```bash
cd tools
sh ./scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8 --cfg_file ./cfgs/kitti_models/PartA2.yaml --batch_size 32 --workers 32 --epochs 80
```
|