Update README.md
Browse files
README.md
CHANGED
|
@@ -32,15 +32,15 @@ fine-tuned versions on a task that interests you.
|
|
| 32 |
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
| 33 |
|
| 34 |
```python
|
| 35 |
-
from transformers import
|
| 36 |
import torch
|
| 37 |
from datasets import load_dataset
|
| 38 |
|
| 39 |
dataset = load_dataset("huggingface/cats-image")
|
| 40 |
image = dataset["test"]["image"][0]
|
| 41 |
|
| 42 |
-
feature_extractor =
|
| 43 |
-
model =
|
| 44 |
|
| 45 |
inputs = feature_extractor(image, return_tensors="pt")
|
| 46 |
|
|
@@ -49,7 +49,8 @@ with torch.no_grad():
|
|
| 49 |
|
| 50 |
# model predicts one of the 1000 ImageNet classes
|
| 51 |
predicted_label = logits.argmax(-1).item()
|
| 52 |
-
print(model.config.id2label[predicted_label
|
|
|
|
| 53 |
```
|
| 54 |
|
| 55 |
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/bit).
|
|
|
|
| 32 |
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
| 33 |
|
| 34 |
```python
|
| 35 |
+
from transformers import BitImageProcessor, BitForImageClassification
|
| 36 |
import torch
|
| 37 |
from datasets import load_dataset
|
| 38 |
|
| 39 |
dataset = load_dataset("huggingface/cats-image")
|
| 40 |
image = dataset["test"]["image"][0]
|
| 41 |
|
| 42 |
+
feature_extractor = BitImageProcessor.from_pretrained("google/bit-50")
|
| 43 |
+
model = BitForImageClassification.from_pretrained("google/bit-50")
|
| 44 |
|
| 45 |
inputs = feature_extractor(image, return_tensors="pt")
|
| 46 |
|
|
|
|
| 49 |
|
| 50 |
# model predicts one of the 1000 ImageNet classes
|
| 51 |
predicted_label = logits.argmax(-1).item()
|
| 52 |
+
print(model.config.id2label[predicted_label
|
| 53 |
+
>>> tabby, tabby cat
|
| 54 |
```
|
| 55 |
|
| 56 |
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/bit).
|