Add model card
Browse files
README.md
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
This model corresponds to **tapas_masklm_large_reset** of the [original repository](https://github.com/google-research/tapas).
|
| 2 |
+
|
| 3 |
+
Here's how you can use it:
|
| 4 |
+
|
| 5 |
+
```python
|
| 6 |
+
from transformers import TapasTokenizer, TapasForMaskedLM
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
tokenizer = TapasTokenizer.from_pretrained("google/tapas-large-masklm")
|
| 11 |
+
model = TapasForMaskedLM.from_pretrained("google/tapas-large-masklm")
|
| 12 |
+
|
| 13 |
+
data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
|
| 14 |
+
'Age': ["56", "45", "59"],
|
| 15 |
+
'Number of movies': ["87", "53", "69"]
|
| 16 |
+
}
|
| 17 |
+
table = pd.DataFrame.from_dict(data)
|
| 18 |
+
query = "How many movies has Leonardo [MASK] Caprio played in?"
|
| 19 |
+
|
| 20 |
+
# prepare inputs
|
| 21 |
+
inputs = tokenizer(table=table, queries=query, padding="max_length", return_tensors="pt")
|
| 22 |
+
|
| 23 |
+
# forward pass
|
| 24 |
+
outputs = model(**inputs)
|
| 25 |
+
|
| 26 |
+
# return top 5 values and predictions
|
| 27 |
+
masked_index = torch.nonzero(inputs.input_ids.squeeze() == tokenizer.mask_token_id, as_tuple=False)
|
| 28 |
+
logits = outputs.logits[0, masked_index.item(), :]
|
| 29 |
+
probs = logits.softmax(dim=0)
|
| 30 |
+
values, predictions = probs.topk(5)
|
| 31 |
+
|
| 32 |
+
for value, pred in zip(values, predictions):
|
| 33 |
+
print(f"{tokenizer.decode([pred])} with confidence {value}")
|
| 34 |
+
```
|