gsarch commited on
Commit
25e5e40
·
verified ·
1 Parent(s): e570f22

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -2
README.md CHANGED
@@ -1,3 +1,138 @@
1
- # ViGoRL-7b-Spatial
2
 
3
- Checkpoint for **ViGoRL** trained on *spatial* domain. Uploaded automatically from `/data/group_data/katefgroup/datasets/vigorl_datasets/checkpoints/spatial/ViGoRL-7b-Spatial`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ViGoRL: Visually Grounded Reinforcement Learning for Visual Reasoning
2
 
3
+ This model card describes the ViGoRL (**Vi**sually **G**r**o**unded **R**einforcement **L**earning) model, introduced in our paper ["Grounded Reinforcement Learning for Visual Reasoning"](https://arxiv.org/abs/2505.23678).
4
+
5
+ **Authors:** Gabriel Sarch, Snigdha Saha, Naitik Khandelwal, Ayush Jain, Michael J. Tarr, Aviral Kumar, Katerina Fragkiadaki
6
+
7
+ ---
8
+
9
+ ## Model Overview
10
+
11
+ ViGoRL is a vision-language model fine-tuned using reinforcement learning (RL) to explicitly anchor textual reasoning steps to visual coordinates. Inspired by human visual cognition, ViGoRL employs multi-turn visual grounding, dynamically zooming into image regions to perform fine-grained visual reasoning and grounding.
12
+
13
+ This model was trained using supervised fine-tuning (SFT) on visually-grounded reasoning traces generated via Monte Carlo Tree Search (MCTS), followed by reinforcement learning with Group Relative Policy Optimization (GRPO).
14
+
15
+ ---
16
+
17
+ ## Model Details
18
+
19
+ * **Base Architecture:** Qwen2.5-Vision-Language (3B or 7B parameters)
20
+ * **Training Paradigm:**
21
+
22
+ * Supervised Fine-Tuning on MCTS-generated reasoning traces
23
+ * Group Relative Policy Optimization (GRPO)
24
+ * Multi-turn visual grounding with dynamic zoom-in feedback (if "Multiturn" appears in name)
25
+
26
+ ---
27
+
28
+ ## Use Cases
29
+
30
+ This model excels in visual reasoning tasks that require precise visual grounding and region-level reasoning. Please see model name for specific domain.
31
+
32
+ * **Spatial Reasoning:** SAT-2, BLINK, RoboSpatial
33
+ * **Visual Search:** V\*Bench
34
+ * **Web Interaction and Grounding:** ScreenSpot (Pro and V2), VisualWebArena
35
+
36
+ ---
37
+
38
+ ## Usage
39
+
40
+ You can load this model easily using Hugging Face's Transformers library:
41
+
42
+ ```python
43
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
44
+ from qwen_vl_utils import process_vision_info
45
+ import torch
46
+
47
+ # # default: Load the model on the available device(s)
48
+ # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
49
+ # "", torch_dtype="auto", device_map="auto"
50
+ # ) # replace with any of the ViGoRL models
51
+
52
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving.
53
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
54
+ "",
55
+ torch_dtype=torch.bfloat16,
56
+ attn_implementation="flash_attention_2",
57
+ device_map="auto",
58
+ )
59
+
60
+ # default processer
61
+ processor = AutoProcessor.from_pretrained("")
62
+
63
+ # The default range for the number of visual tokens per image in the model is 4-16384.
64
+ # You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
65
+ # min_pixels = 256*28*28
66
+ # max_pixels = 1280*28*28
67
+ # processor = AutoProcessor.from_pretrained("", min_pixels=min_pixels, max_pixels=max_pixels)
68
+
69
+ messages = [
70
+ {
71
+ "role": "user",
72
+ "content": [
73
+ {
74
+ "type": "image",
75
+ "image": "path/to/image.png",
76
+ },
77
+ {"type": "text", "text": "QUERY HERE"},
78
+ ],
79
+ }
80
+ ]
81
+
82
+ # Preparation for inference
83
+ text = processor.apply_chat_template(
84
+ messages, tokenize=False, add_generation_prompt=True
85
+ )
86
+ image_inputs, video_inputs = process_vision_info(messages)
87
+ inputs = processor(
88
+ text=[text],
89
+ images=image_inputs,
90
+ videos=video_inputs,
91
+ padding=True,
92
+ return_tensors="pt",
93
+ )
94
+ inputs = inputs.to("cuda")
95
+
96
+ # Inference: Generation of the output
97
+ generated_ids = model.generate(**inputs, max_new_tokens=512)
98
+ generated_ids_trimmed = [
99
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
100
+ ]
101
+ output_text = processor.batch_decode(
102
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
103
+ )
104
+ print(output_text) # this will output a single tool call turn of the model if version is multiturn.
105
+ ```
106
+
107
+ **Important**: This model requires a system prompt for proper usage. Please see the model's chat template for details.
108
+
109
+ ---
110
+
111
+ ## Datasets and Training Data
112
+
113
+ Training datasets and generated reasoning chains are publicly available:
114
+
115
+ * [Code](https://github.com/Gabesarch/grounded-rl)
116
+ * [ViGoRL Datasets on Hugging Face](https://huggingface.co/datasets/gsarch/vigorl_datasets)
117
+
118
+ ---
119
+
120
+ ## Citation
121
+
122
+ If you use ViGoRL in your research or applications, please cite our paper:
123
+
124
+ ```bibtex
125
+ @article{sarch2025vigorl,
126
+ title={Grounded Reinforcement Learning for Visual Reasoning},
127
+ author={Sarch, Gabriel and Saha, Snigdha and Khandelwal, Naitik and Jain, Ayush and Tarr, Michael J and Kumar, Aviral and Fragkiadaki, Katerina},
128
+ year={2025}
129
+ }
130
+ ```
131
+
132
+ ---
133
+
134
+ ## Contact
135
+
136
+ For questions, feedback, or collaborations, please reach out to Gabriel Sarch or open an issue in our [GitHub repository](https://github.com/Gabesarch/grounded-rl).
137
+
138
+ ---