Upload 9 files
Browse files---
license: mit
language:
- ru
- en
pipeline_tag: feature-extraction
tags:
- MTEB
- transformers
library_name: sentence-transformers
---
## Giga-Embeddings-instruct-bnb-4bit
Модель создана путем квантизации Giga-Embeddings-instruct модулем BitsAndBytes в формат 4 бит.
- Base Decoder-only LLM: GigaChat-3b
- Pooling Type: Latent-Attention
- Embedding Dimension: 2048
Для получения более подробной информации о технических деталях, пожалуйста, обратитесь к нашей [статье](https://aclanthology.org/2025.bsnlp-1.3/).
## Использование
Ниже приведен пример кодирования запросов и текстов.
### Requirements
```bash
pip install -q transformers==4.51.0 sentence-transformers==5.1.1 flash-attn langchain_community langchain_huggingface langchain_gigachat
```
### Transformers
```python
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery: {query}'
# Each query must come with a one-sentence instruction that describes the task
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
get_detailed_instruct(task, 'What is the capital of Russia?'),
get_detailed_instruct(task, 'Explain gravity')
]
# No need to add instruction for retrieval documents
documents = [
"The capital of Russia is Moscow.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
]
input_texts = queries + documents
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
tokenizer = AutoTokenizer.from_pretrained(
'ai-sage/Giga-Embeddings-instruct',
trust_remote_code=True
)
model = AutoModel.from_pretrained(
'ai-sage/Giga-Embeddings-instruct',
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
model.eval()
model.cuda()
max_length = 4096
# Tokenize the input texts
batch_dict = tokenizer(
input_texts,
padding=True,
truncation=True,
max_length=max_length,
return_tensors="pt",
)
batch_dict.to(model.device)
embeddings = model(**batch_dict, return_embeddings=True)
scores = (embeddings[:2] @ embeddings[2:].T)
print(scores.tolist())
# [[0.58203125, 0.0712890625], [0.06884765625, 0.62109375]]
```
### Sentence Transformers
```python
import torch
from sentence_transformers import SentenceTransformer
# Load the model
# We recommend enabling flash_attention_2 for better acceleration and memory saving
model = SentenceTransformer(
"ai-sage/Giga-Embeddings-instruct",
model_kwargs={
"attn_implementation": "flash_attention_2",
"torch_dtype": torch.bfloat16,
"trust_remote_code": "True"
},
config_kwargs={
"trust_remote_code": "True"
}
)
model.max_seq_length = 4096
# The queries and documents to embed
queries = [
'What is the capital of Russia?',
'Explain gravity'
]
# No need to add instruction for retrieval documents
documents = [
"The capital of Russia is Moscow.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
]
# Encode the queries and documents. Note that queries benefit from using a prompt
query_embeddings = model.encode(queries, prompt='Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery: ')
document_embeddings = model.encode(documents)
# Compute the (cosine) similarity between the query and document embeddings
similarity = model.similarity(query_embeddings, document_embeddings)
print(similarity)
# tensor([[0.5846, 0.0702],
# [0.0691, 0.6207]])
```
### LangChain
```python
import torch
from langchain_huggingface import HuggingFaceEmbeddings
# Load model
embeddings = HuggingFaceEmbeddings(
model_name='ai-sage/Giga-Embeddings-instruct',
encode_kwargs={},
model_kwargs={
'device': 'cuda',
'trust_remote_code': True,
'model_kwargs': {'torch_dtype': torch.bfloat16},
'prompts': {'query': 'Instruct: Given a question, retrieve passages that answer the question\nQuery: '}
}
)
# Tokenizer
embeddings._client.tokenizer.tokenize("Hello world! I am GigaChat")
# Query embeddings
query_embeddings = embeddings.embed_query("Hello world!")
print(f"Your embeddings: {query_embeddings[0:20]}...")
print(f"Vector size: {len(query_embeddings)}")
# Document embeddings
documents = ["foo bar", "bar foo"]
documents_embeddings = embeddings.embed_documents(documents)
print(f"Vector size: {len(documents_embeddings)} x {len(documents_embeddings[0])}")
```
## Инструктивность
**Использование инструкций для улучшения качества эмбеддингов**
Для достижения более точных результатов при работе с эмбеддингами, особенно в задачах поиска и извлечения информации (retrieval), рекомендуется добавлять инструкцию на естественном языке перед текстовым запросом (query). Это помогает модели лучше понять контекст и цель запроса, что положительно сказывается на качестве результатов. Важно отметить, что инструкцию нужно добавлять только перед запросом, а не перед документом.
Для **симметричных задач**, таких как классификация (classification) или семантическое сравнение текстов (semantic text similarity), инструкцию необходимо добавлять перед каждым запросом. Это связано с тем, что такие задачи требуют одинакового контекста для всех входных данных, чтобы модель могла корректно сравнивать или классифицировать их.
**Примеры инструкций для симметричных задач:**
- `"Retrieve semantically similar text"`
- `"Given a text, retrieve semantically similar text"`
- `"Дано предложение, необходимо найти его парафраз"`
- `"Классифицируй отзыв на товар как положительный, отрицательный или нейтральный"`
- `"Классифицируй чувствительную тему по запросу"`
Для **retrieval-задач** (например, поиск ответа в тексте) можно использовать инструкцию:
`'Дан вопрос, необходимо найти абзац текста с ответом'`.
Такой подход особенно эффективен для задач поиска и извлечения информации, таких как поиск релевантных документов или извлечение ответов из текста.
**Примеры инструкций для retrieval-задач:**
- `'Дан вопрос, необходимо найти абзац текста с ответом'`
- `'Given the question, find a paragraph with the answer'`
Инструкции необходимо оборачивать в шаблон: `f'Instruct: {task_description}\nQuery: {query}'`. Использование инструкций позволяет значительно улучшить качество поиска и релевантность результатов, что подтверждается тестами на бенчмарках, таких как RuBQ, MIRACL. Для симметричных задач добавление инструкции перед каждым запросом обеспечивает согласованность и повышает точность модели.
## Поддерживаемые языки
Эта модель инициализирована pretrain моделью GigaChat и дополнительно обучена на смеси английских и русских данных.
## FAQ
1. Нужно ли добавлять инструкции к запросу?
Да, именно так модель обучалась, иначе вы увидите снижение качества. Определение задачи должно быть инструкцией в одном предложении, которая описывает задачу. Это способ настройки текстовых эмбеддингов для разных сценариев с помощью инструкций на естественном языке.
С другой стороны, добавлять инструкции на сторону документа не требуется.
2. Почему мои воспроизведённые результаты немного отличаются от указанных в карточке модели?
Разные версии библиотек transformers и pytorch могут вызывать незначительные, но ненулевые различия в результатах.
## Ограничения
Использование этой модели для входных данных, содержащих более 4096 токенов, невозможно.
- .gitattributes +1 -0
- chat_template.jinja +1 -0
- config.json +231 -0
- configuration_gigarembed.py +306 -0
- model.safetensors +3 -0
- modeling_gigarembed.py +1015 -0
- quantization_config.json +15 -0
- special_tokens_map.json +37 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2092 -0
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{%- for message in messages -%}{{ message['content'] }}{%- if not loop.last -%}{{ ' ' }}{%- endif -%}{%- endfor -%}
|
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_non_freeze_layers_idxs": null,
|
| 3 |
+
"activation_checkpoint_layers_num": null,
|
| 4 |
+
"add_eos": true,
|
| 5 |
+
"add_pad_token": true,
|
| 6 |
+
"apply_torch_compile_to_projections": true,
|
| 7 |
+
"architectures": [
|
| 8 |
+
"GigarEmbedModel"
|
| 9 |
+
],
|
| 10 |
+
"auto_map": {
|
| 11 |
+
"AutoConfig": "configuration_gigarembed.GigarEmbedConfig",
|
| 12 |
+
"AutoModel": "modeling_gigarembed.GigarEmbedModel"
|
| 13 |
+
},
|
| 14 |
+
"hidden_size": 2048,
|
| 15 |
+
"is_mask_instruction": true,
|
| 16 |
+
"latent_attention_config": {
|
| 17 |
+
"_name_or_path": "",
|
| 18 |
+
"add_cross_attention": false,
|
| 19 |
+
"architectures": null,
|
| 20 |
+
"bad_words_ids": null,
|
| 21 |
+
"begin_suppress_tokens": null,
|
| 22 |
+
"bos_token_id": null,
|
| 23 |
+
"chunk_size_feed_forward": 0,
|
| 24 |
+
"cross_attention_hidden_size": null,
|
| 25 |
+
"cross_dim_head": 2048,
|
| 26 |
+
"decoder_start_token_id": null,
|
| 27 |
+
"diversity_penalty": 0.0,
|
| 28 |
+
"do_sample": false,
|
| 29 |
+
"early_stopping": false,
|
| 30 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 31 |
+
"eos_token_id": null,
|
| 32 |
+
"exponential_decay_length_penalty": null,
|
| 33 |
+
"finetuning_task": null,
|
| 34 |
+
"forced_bos_token_id": null,
|
| 35 |
+
"forced_eos_token_id": null,
|
| 36 |
+
"hidden_dim": 2048,
|
| 37 |
+
"id2label": {
|
| 38 |
+
"0": "LABEL_0",
|
| 39 |
+
"1": "LABEL_1"
|
| 40 |
+
},
|
| 41 |
+
"is_decoder": false,
|
| 42 |
+
"is_encoder_decoder": false,
|
| 43 |
+
"label2id": {
|
| 44 |
+
"LABEL_0": 0,
|
| 45 |
+
"LABEL_1": 1
|
| 46 |
+
},
|
| 47 |
+
"latent_dim": 2048,
|
| 48 |
+
"length_penalty": 1.0,
|
| 49 |
+
"max_length": 20,
|
| 50 |
+
"min_length": 0,
|
| 51 |
+
"model_type": "latent_attention",
|
| 52 |
+
"mult": 4,
|
| 53 |
+
"no_repeat_ngram_size": 0,
|
| 54 |
+
"num_beam_groups": 1,
|
| 55 |
+
"num_beams": 1,
|
| 56 |
+
"num_cross_heads": 8,
|
| 57 |
+
"num_latents_value": 512,
|
| 58 |
+
"num_return_sequences": 1,
|
| 59 |
+
"output_attentions": false,
|
| 60 |
+
"output_hidden_states": false,
|
| 61 |
+
"output_scores": false,
|
| 62 |
+
"pad_token_id": null,
|
| 63 |
+
"prefix": null,
|
| 64 |
+
"problem_type": null,
|
| 65 |
+
"pruned_heads": {},
|
| 66 |
+
"remove_invalid_values": false,
|
| 67 |
+
"repetition_penalty": 1.0,
|
| 68 |
+
"return_dict": true,
|
| 69 |
+
"return_dict_in_generate": false,
|
| 70 |
+
"sep_token_id": null,
|
| 71 |
+
"suppress_tokens": null,
|
| 72 |
+
"task_specific_params": null,
|
| 73 |
+
"temperature": 1.0,
|
| 74 |
+
"tf_legacy_loss": false,
|
| 75 |
+
"tie_encoder_decoder": false,
|
| 76 |
+
"tie_word_embeddings": true,
|
| 77 |
+
"tokenizer_class": null,
|
| 78 |
+
"top_k": 50,
|
| 79 |
+
"top_p": 1.0,
|
| 80 |
+
"torch_dtype": null,
|
| 81 |
+
"torchscript": false,
|
| 82 |
+
"typical_p": 1.0,
|
| 83 |
+
"use_bfloat16": false
|
| 84 |
+
},
|
| 85 |
+
"mask_type": "b",
|
| 86 |
+
"model_type": "gigarembed",
|
| 87 |
+
"padding_side": "right",
|
| 88 |
+
"quantization_config": {
|
| 89 |
+
"_load_in_4bit": true,
|
| 90 |
+
"_load_in_8bit": false,
|
| 91 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
| 92 |
+
"bnb_4bit_quant_storage": "uint8",
|
| 93 |
+
"bnb_4bit_quant_type": "nf4",
|
| 94 |
+
"bnb_4bit_use_double_quant": true,
|
| 95 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
| 96 |
+
"llm_int8_has_fp16_weight": false,
|
| 97 |
+
"llm_int8_skip_modules": null,
|
| 98 |
+
"llm_int8_threshold": 6.0,
|
| 99 |
+
"load_in_4bit": true,
|
| 100 |
+
"load_in_8bit": false,
|
| 101 |
+
"quant_method": "bitsandbytes"
|
| 102 |
+
},
|
| 103 |
+
"text_config": {
|
| 104 |
+
"_name_or_path": "ai-sage/Giga-Embeddings-instruct",
|
| 105 |
+
"add_cross_attention": false,
|
| 106 |
+
"apply_qk_norm": true,
|
| 107 |
+
"architectures": null,
|
| 108 |
+
"attention_bias": false,
|
| 109 |
+
"attention_dropout": 0.0,
|
| 110 |
+
"attention_hidden_size": null,
|
| 111 |
+
"attention_type": "LlamaLatentAttention",
|
| 112 |
+
"bad_words_ids": null,
|
| 113 |
+
"begin_suppress_tokens": null,
|
| 114 |
+
"bos_token_id": 1,
|
| 115 |
+
"chunk_size_feed_forward": 0,
|
| 116 |
+
"cross_attention_hidden_size": null,
|
| 117 |
+
"decoder_start_token_id": null,
|
| 118 |
+
"delete_logits": true,
|
| 119 |
+
"deterministic_attention": false,
|
| 120 |
+
"diversity_penalty": 0.0,
|
| 121 |
+
"do_sample": false,
|
| 122 |
+
"early_stopping": false,
|
| 123 |
+
"enable_async_tp": false,
|
| 124 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 125 |
+
"eos_token_id": 2,
|
| 126 |
+
"exponential_decay_length_penalty": null,
|
| 127 |
+
"finetuning_task": null,
|
| 128 |
+
"forced_bos_token_id": null,
|
| 129 |
+
"forced_eos_token_id": null,
|
| 130 |
+
"freeze_non_embed": false,
|
| 131 |
+
"fused_mlp": true,
|
| 132 |
+
"fused_mlp_checkpoint_lvl": 3,
|
| 133 |
+
"head_dim": 64,
|
| 134 |
+
"hidden_act": "silu",
|
| 135 |
+
"hidden_size": 2048,
|
| 136 |
+
"id2label": {
|
| 137 |
+
"0": "LABEL_0",
|
| 138 |
+
"1": "LABEL_1"
|
| 139 |
+
},
|
| 140 |
+
"ignore_index": -100,
|
| 141 |
+
"init_device": "meta",
|
| 142 |
+
"initializer_range": 0.02,
|
| 143 |
+
"intermediate_size": 11008,
|
| 144 |
+
"is_decoder": false,
|
| 145 |
+
"is_encoder_decoder": false,
|
| 146 |
+
"kv_lora_rank": 1024,
|
| 147 |
+
"label2id": {
|
| 148 |
+
"LABEL_0": 0,
|
| 149 |
+
"LABEL_1": 1
|
| 150 |
+
},
|
| 151 |
+
"length_penalty": 1.0,
|
| 152 |
+
"lora_alpha": null,
|
| 153 |
+
"lora_r": null,
|
| 154 |
+
"loss_inplace_backward": false,
|
| 155 |
+
"max_length": 20,
|
| 156 |
+
"max_position_embeddings": 4096,
|
| 157 |
+
"max_window_layers": 36,
|
| 158 |
+
"min_length": 0,
|
| 159 |
+
"mla_config": {
|
| 160 |
+
"kv_lora_rank": 1024,
|
| 161 |
+
"q_lora_rank": 0,
|
| 162 |
+
"qk_nope_head_dim": 64,
|
| 163 |
+
"qk_rope_head_dim": 64,
|
| 164 |
+
"v_head_dim": 128
|
| 165 |
+
},
|
| 166 |
+
"mlp_bias": false,
|
| 167 |
+
"model_type": "gigar",
|
| 168 |
+
"mtp_loss_weight": 0.1,
|
| 169 |
+
"mtp_predictor_num": 1,
|
| 170 |
+
"no_repeat_ngram_size": 0,
|
| 171 |
+
"norm_type": "LlamaRMSNorm",
|
| 172 |
+
"num_attention_heads": 16,
|
| 173 |
+
"num_beam_groups": 1,
|
| 174 |
+
"num_beams": 1,
|
| 175 |
+
"num_hidden_layers": 36,
|
| 176 |
+
"num_key_value_heads": 16,
|
| 177 |
+
"num_return_sequences": 1,
|
| 178 |
+
"output_attentions": false,
|
| 179 |
+
"output_hidden_states": false,
|
| 180 |
+
"output_scores": false,
|
| 181 |
+
"pad_token_id": 2,
|
| 182 |
+
"parallel_embedding_type": "EmbeddingParallelEmbedding",
|
| 183 |
+
"prefix": null,
|
| 184 |
+
"pretraining_tp": 1,
|
| 185 |
+
"problem_type": null,
|
| 186 |
+
"pruned_heads": {},
|
| 187 |
+
"q_lora_rank": 0,
|
| 188 |
+
"qk_nope_head_dim": 64,
|
| 189 |
+
"qk_rope_head_dim": 64,
|
| 190 |
+
"remove_invalid_values": false,
|
| 191 |
+
"repetition_penalty": 1.0,
|
| 192 |
+
"return_dict": true,
|
| 193 |
+
"return_dict_in_generate": false,
|
| 194 |
+
"rms_norm_eps": 1e-06,
|
| 195 |
+
"rope_scaling": null,
|
| 196 |
+
"rope_theta": 100000.0,
|
| 197 |
+
"sep_token_id": null,
|
| 198 |
+
"skip_init_tp_modules": true,
|
| 199 |
+
"sliding_window": null,
|
| 200 |
+
"sp_split_type": "equal",
|
| 201 |
+
"suppress_tokens": null,
|
| 202 |
+
"task_specific_params": null,
|
| 203 |
+
"temperature": 1.0,
|
| 204 |
+
"tf_legacy_loss": false,
|
| 205 |
+
"tie_encoder_decoder": false,
|
| 206 |
+
"tie_word_embeddings": false,
|
| 207 |
+
"tokenizer_class": null,
|
| 208 |
+
"top_k": 50,
|
| 209 |
+
"top_p": 1.0,
|
| 210 |
+
"torch_dtype": null,
|
| 211 |
+
"torchscript": false,
|
| 212 |
+
"tp_group": null,
|
| 213 |
+
"tp_size": 1,
|
| 214 |
+
"typical_p": 1.0,
|
| 215 |
+
"unk_token_id": 0,
|
| 216 |
+
"use_bfloat16": false,
|
| 217 |
+
"use_cache": false,
|
| 218 |
+
"use_cache_force": false,
|
| 219 |
+
"use_custom_rotary_kernel": false,
|
| 220 |
+
"use_liger": false,
|
| 221 |
+
"use_mrope": false,
|
| 222 |
+
"use_mtp": true,
|
| 223 |
+
"use_sliding_window": false,
|
| 224 |
+
"v_head_dim": 128,
|
| 225 |
+
"varlen_input": true,
|
| 226 |
+
"vocab_size": 128256,
|
| 227 |
+
"z_loss_eps": 5e-05
|
| 228 |
+
},
|
| 229 |
+
"torch_dtype": "float16",
|
| 230 |
+
"transformers_version": "4.53.2"
|
| 231 |
+
}
|
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import warnings
|
| 2 |
+
|
| 3 |
+
from typing import Literal
|
| 4 |
+
from transformers import AutoConfig
|
| 5 |
+
from transformers.models.auto import CONFIG_MAPPING
|
| 6 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 7 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 8 |
+
|
| 9 |
+
GIGAREMBED_TYPE = "gigarembed"
|
| 10 |
+
LATENT_ATTENTION_TYPE = "latent_attention"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class GigarConfig(PretrainedConfig):
|
| 14 |
+
r"""
|
| 15 |
+
This is the configuration class to store the configuration of a [`GigarModel`]. It is used to instantiate an Gigar
|
| 16 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 17 |
+
defaults will yield a similar configuration to that of the Gigar-7B.
|
| 18 |
+
|
| 19 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 20 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 25 |
+
Vocabulary size of the Gigar model. Defines the number of different tokens that can be represented by the
|
| 26 |
+
`inputs_ids` passed when calling [`GigarModel`]
|
| 27 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 28 |
+
Dimension of the hidden representations.
|
| 29 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 30 |
+
Dimension of the MLP representations.
|
| 31 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 32 |
+
Number of hidden layers in the Transformer decoder.
|
| 33 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 34 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 35 |
+
num_key_value_heads (`int`, *optional*):
|
| 36 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 37 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 38 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 39 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 40 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 41 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 42 |
+
`num_attention_heads`.
|
| 43 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 44 |
+
The non-linear activation function (function or string) in the decoder.
|
| 45 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 46 |
+
The maximum sequence length that this model might ever be used with. Gigar 1 supports up to 2048 tokens,
|
| 47 |
+
Gigar 2 up to 4096, CodeLlama up to 16384.
|
| 48 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 49 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 50 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 51 |
+
The epsilon used by the rms normalization layers.
|
| 52 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 53 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 54 |
+
relevant if `config.is_decoder=True`.
|
| 55 |
+
pad_token_id (`int`, *optional*):
|
| 56 |
+
Padding token id.
|
| 57 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 58 |
+
Beginning of stream token id.
|
| 59 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 60 |
+
End of stream token id.
|
| 61 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 62 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 63 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
| 64 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
| 65 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 66 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 67 |
+
Whether to tie weight embeddings
|
| 68 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 69 |
+
The base period of the RoPE embeddings.
|
| 70 |
+
rope_scaling (`Dict`, *optional*):
|
| 71 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 72 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 73 |
+
accordingly.
|
| 74 |
+
Expected contents:
|
| 75 |
+
`rope_type` (`str`):
|
| 76 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 77 |
+
'gigar3'], with 'default' being the original RoPE implementation.
|
| 78 |
+
`factor` (`float`, *optional*):
|
| 79 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 80 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 81 |
+
original maximum pre-trained length.
|
| 82 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 83 |
+
Used with 'dynamic', 'longrope' and 'gigar3'. The original max position embeddings used during
|
| 84 |
+
pretraining.
|
| 85 |
+
`attention_factor` (`float`, *optional*):
|
| 86 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 87 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 88 |
+
`factor` field to infer the suggested value.
|
| 89 |
+
`beta_fast` (`float`, *optional*):
|
| 90 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 91 |
+
ramp function. If unspecified, it defaults to 32.
|
| 92 |
+
`beta_slow` (`float`, *optional*):
|
| 93 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 94 |
+
ramp function. If unspecified, it defaults to 1.
|
| 95 |
+
`short_factor` (`List[float]`, *optional*):
|
| 96 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 97 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 98 |
+
size divided by the number of attention heads divided by 2
|
| 99 |
+
`long_factor` (`List[float]`, *optional*):
|
| 100 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 101 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 102 |
+
size divided by the number of attention heads divided by 2
|
| 103 |
+
`low_freq_factor` (`float`, *optional*):
|
| 104 |
+
Only used with 'gigar3'. Scaling factor applied to low frequency components of the RoPE
|
| 105 |
+
`high_freq_factor` (`float`, *optional*):
|
| 106 |
+
Only used with 'gigar3'. Scaling factor applied to high frequency components of the RoPE
|
| 107 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
| 108 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 109 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 110 |
+
The dropout ratio for the attention probabilities.
|
| 111 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
| 112 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
| 113 |
+
head_dim (`int`, *optional*):
|
| 114 |
+
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
|
| 115 |
+
|
| 116 |
+
```python
|
| 117 |
+
>>> from transformers import GigarModel, GigarConfig
|
| 118 |
+
|
| 119 |
+
>>> # Initializing a Gigar gigar-7b style configuration
|
| 120 |
+
>>> configuration = GigarConfig()
|
| 121 |
+
|
| 122 |
+
>>> # Initializing a model from the gigar-7b style configuration
|
| 123 |
+
>>> model = GigarModel(configuration)
|
| 124 |
+
|
| 125 |
+
>>> # Accessing the model configuration
|
| 126 |
+
>>> configuration = model.config
|
| 127 |
+
```"""
|
| 128 |
+
|
| 129 |
+
model_type = "gigar"
|
| 130 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 131 |
+
# Default tensor parallel plan for base model `GigarModel`
|
| 132 |
+
base_model_tp_plan = {
|
| 133 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 134 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 135 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 136 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 137 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 138 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 139 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 140 |
+
}
|
| 141 |
+
|
| 142 |
+
def __init__(
|
| 143 |
+
self,
|
| 144 |
+
vocab_size=32000,
|
| 145 |
+
hidden_size=4096,
|
| 146 |
+
intermediate_size=11008,
|
| 147 |
+
num_hidden_layers=32,
|
| 148 |
+
num_attention_heads=32,
|
| 149 |
+
num_key_value_heads=None,
|
| 150 |
+
hidden_act="silu",
|
| 151 |
+
max_position_embeddings=2048,
|
| 152 |
+
initializer_range=0.02,
|
| 153 |
+
rms_norm_eps=1e-6,
|
| 154 |
+
use_cache=True,
|
| 155 |
+
pad_token_id=None,
|
| 156 |
+
bos_token_id=1,
|
| 157 |
+
eos_token_id=2,
|
| 158 |
+
pretraining_tp=1,
|
| 159 |
+
tie_word_embeddings=False,
|
| 160 |
+
rope_theta=10000.0,
|
| 161 |
+
rope_scaling=None,
|
| 162 |
+
attention_bias=False,
|
| 163 |
+
attention_dropout=0.0,
|
| 164 |
+
mlp_bias=False,
|
| 165 |
+
head_dim=None,
|
| 166 |
+
apply_qk_norm=False,
|
| 167 |
+
mla_config=None,
|
| 168 |
+
**kwargs,
|
| 169 |
+
):
|
| 170 |
+
super().__init__(
|
| 171 |
+
pad_token_id=pad_token_id,
|
| 172 |
+
bos_token_id=bos_token_id,
|
| 173 |
+
eos_token_id=eos_token_id,
|
| 174 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 175 |
+
**kwargs,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
self.vocab_size = vocab_size
|
| 179 |
+
self.max_position_embeddings = max_position_embeddings
|
| 180 |
+
self.hidden_size = hidden_size
|
| 181 |
+
self.intermediate_size = intermediate_size
|
| 182 |
+
self.num_hidden_layers = num_hidden_layers
|
| 183 |
+
self.num_attention_heads = num_attention_heads
|
| 184 |
+
|
| 185 |
+
# for backward compatibility
|
| 186 |
+
if num_key_value_heads is None:
|
| 187 |
+
num_key_value_heads = num_attention_heads
|
| 188 |
+
|
| 189 |
+
self.num_key_value_heads = num_key_value_heads
|
| 190 |
+
self.hidden_act = hidden_act
|
| 191 |
+
self.initializer_range = initializer_range
|
| 192 |
+
self.rms_norm_eps = rms_norm_eps
|
| 193 |
+
self.pretraining_tp = pretraining_tp
|
| 194 |
+
self.use_cache = use_cache
|
| 195 |
+
self.rope_theta = rope_theta
|
| 196 |
+
self.rope_scaling = rope_scaling
|
| 197 |
+
self.attention_bias = attention_bias
|
| 198 |
+
self.attention_dropout = attention_dropout
|
| 199 |
+
self.mlp_bias = mlp_bias
|
| 200 |
+
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
|
| 201 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 202 |
+
# BC: if there is a 'type' field, copy it it to 'rope_type'.
|
| 203 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 204 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 205 |
+
rope_config_validation(self)
|
| 206 |
+
|
| 207 |
+
self.apply_qk_norm = apply_qk_norm
|
| 208 |
+
self.mla_config = mla_config
|
| 209 |
+
|
| 210 |
+
self._validate_mla_config()
|
| 211 |
+
|
| 212 |
+
def _validate_mla_config(self):
|
| 213 |
+
if self.mla_config is None:
|
| 214 |
+
warnings.warn("MLA config is None!")
|
| 215 |
+
return
|
| 216 |
+
|
| 217 |
+
EXPECTED_KEYS = [
|
| 218 |
+
"qk_nope_head_dim",
|
| 219 |
+
"qk_rope_head_dim",
|
| 220 |
+
"v_head_dim",
|
| 221 |
+
"kv_lora_rank",
|
| 222 |
+
"q_lora_rank",
|
| 223 |
+
]
|
| 224 |
+
if not all((key in self.mla_config for key in EXPECTED_KEYS)):
|
| 225 |
+
raise ValueError(
|
| 226 |
+
f"MLA config is expected to have the following keys {EXPECTED_KEYS} but got {self.mla_config.keys()}."
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
if self.mla_config["qk_nope_head_dim"] + self.mla_config["qk_rope_head_dim"] != self.mla_config["v_head_dim"]:
|
| 230 |
+
err_msg = (
|
| 231 |
+
f"QK and V head dims do not match! Got {self.mla_config['qk_nope_head_dim']} + {self.mla_config['qk_rope_head_dim']} "
|
| 232 |
+
f"= {self.mla_config['qk_rope_head_dim'] + self.mla_config['qk_nope_head_dim']} and {self.mla_config['v_head_dim']}."
|
| 233 |
+
)
|
| 234 |
+
raise ValueError(err_msg)
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class GigarEmbedConfig(PretrainedConfig):
|
| 238 |
+
model_type = "gigarembed"
|
| 239 |
+
is_composition = False
|
| 240 |
+
|
| 241 |
+
def __init__(
|
| 242 |
+
self,
|
| 243 |
+
latent_attention_config=None,
|
| 244 |
+
text_config=None,
|
| 245 |
+
padding_side: Literal["right", "left"]="right",
|
| 246 |
+
add_pad_token: bool=True,
|
| 247 |
+
is_mask_instruction: bool = True,
|
| 248 |
+
add_eos: bool=True,
|
| 249 |
+
mask_type: str="b",
|
| 250 |
+
**kwargs,
|
| 251 |
+
):
|
| 252 |
+
if isinstance(latent_attention_config, dict):
|
| 253 |
+
latent_attention_config["model_type"] = (
|
| 254 |
+
latent_attention_config["model_type"] if "model_type" in latent_attention_config else LATENT_ATTENTION_TYPE
|
| 255 |
+
)
|
| 256 |
+
latent_attention_config = CONFIG_MAPPING[latent_attention_config["model_type"]](**latent_attention_config)
|
| 257 |
+
|
| 258 |
+
self.latent_attention_config = latent_attention_config
|
| 259 |
+
|
| 260 |
+
if isinstance(text_config, dict):
|
| 261 |
+
text_config = GigarConfig(**text_config)
|
| 262 |
+
elif text_config is None:
|
| 263 |
+
text_config = None
|
| 264 |
+
|
| 265 |
+
self.text_config = text_config
|
| 266 |
+
self.padding_side = padding_side
|
| 267 |
+
self.is_mask_instruction = is_mask_instruction
|
| 268 |
+
self.add_pad_token = add_pad_token
|
| 269 |
+
self.add_eos = add_eos
|
| 270 |
+
self.mask_type = mask_type
|
| 271 |
+
if "hidden_size" in kwargs:
|
| 272 |
+
self.hidden_size = kwargs["hidden_size"]
|
| 273 |
+
|
| 274 |
+
super().__init__(**kwargs)
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
class LatentAttentionConfig(PretrainedConfig):
|
| 278 |
+
model_type = LATENT_ATTENTION_TYPE
|
| 279 |
+
is_composition = False
|
| 280 |
+
_name_or_path = "latent_attention"
|
| 281 |
+
|
| 282 |
+
def __init__(
|
| 283 |
+
self,
|
| 284 |
+
num_latents_value: int,
|
| 285 |
+
num_cross_heads: int,
|
| 286 |
+
hidden_dim: int,
|
| 287 |
+
latent_dim: int,
|
| 288 |
+
cross_dim_head: int,
|
| 289 |
+
mult: int,
|
| 290 |
+
**kwargs,
|
| 291 |
+
):
|
| 292 |
+
self.num_latents_value = num_latents_value
|
| 293 |
+
self.num_cross_heads = num_cross_heads
|
| 294 |
+
self.hidden_dim = hidden_dim
|
| 295 |
+
self.latent_dim = latent_dim
|
| 296 |
+
self.cross_dim_head = cross_dim_head
|
| 297 |
+
self.mult = mult
|
| 298 |
+
|
| 299 |
+
super().__init__(**kwargs)
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
AutoConfig.register(GIGAREMBED_TYPE, GigarEmbedConfig)
|
| 303 |
+
AutoConfig.register(LATENT_ATTENTION_TYPE, LatentAttentionConfig)
|
| 304 |
+
|
| 305 |
+
GigarEmbedConfig.register_for_auto_class()
|
| 306 |
+
LatentAttentionConfig.register_for_auto_class()
|
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4fde33de39f7749887f5487b85af2672683bf875d68b40c46039b1ac435691e2
|
| 3 |
+
size 2172114460
|
|
@@ -0,0 +1,1015 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import logging
|
| 3 |
+
from typing import Callable, List, Optional, Tuple, Union, Mapping
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
from einops import rearrange, repeat
|
| 11 |
+
from transformers import AutoModel, AutoTokenizer
|
| 12 |
+
|
| 13 |
+
from transformers.cache_utils import Cache
|
| 14 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
|
| 15 |
+
|
| 16 |
+
from transformers.activations import ACT2FN
|
| 17 |
+
from transformers.cache_utils import DynamicCache, StaticCache
|
| 18 |
+
from transformers.generation import GenerationMixin
|
| 19 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 20 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 21 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 22 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 23 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 24 |
+
from transformers.processing_utils import Unpack
|
| 25 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
|
| 26 |
+
|
| 27 |
+
from .configuration_gigarembed import GigarConfig, GigarEmbedConfig, LatentAttentionConfig
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
logger = logging.getLogger(__name__)
|
| 31 |
+
_CONFIG_FOR_DOC = "GigarEmbedConfig"
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class GigarMLP(nn.Module):
|
| 35 |
+
def __init__(self, config):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.config = config
|
| 38 |
+
self.hidden_size = config.hidden_size
|
| 39 |
+
self.intermediate_size = config.intermediate_size
|
| 40 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
| 41 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
| 42 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
| 43 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 44 |
+
|
| 45 |
+
def forward(self, x):
|
| 46 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 47 |
+
return down_proj
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class GigarRMSNorm(nn.Module):
|
| 51 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 52 |
+
"""
|
| 53 |
+
GigarRMSNorm is equivalent to T5LayerNorm
|
| 54 |
+
"""
|
| 55 |
+
super().__init__()
|
| 56 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 57 |
+
self.variance_epsilon = eps
|
| 58 |
+
|
| 59 |
+
def forward(self, hidden_states):
|
| 60 |
+
input_dtype = hidden_states.dtype
|
| 61 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 62 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 63 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 64 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 65 |
+
|
| 66 |
+
def extra_repr(self):
|
| 67 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def rotate_half(x):
|
| 71 |
+
"""Rotates half the hidden dims of the input."""
|
| 72 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 73 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 74 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 78 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 79 |
+
|
| 80 |
+
Args:
|
| 81 |
+
q (`torch.Tensor`): The query tensor.
|
| 82 |
+
k (`torch.Tensor`): The key tensor.
|
| 83 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 84 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 85 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 86 |
+
Deprecated and unused.
|
| 87 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 88 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 89 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 90 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 91 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 92 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 93 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 94 |
+
Returns:
|
| 95 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 96 |
+
"""
|
| 97 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 98 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 99 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 100 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 101 |
+
return q_embed, k_embed
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 105 |
+
"""
|
| 106 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 107 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 108 |
+
"""
|
| 109 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 110 |
+
if n_rep == 1:
|
| 111 |
+
return hidden_states
|
| 112 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 113 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def eager_attention_forward(
|
| 117 |
+
module: nn.Module,
|
| 118 |
+
query: torch.Tensor,
|
| 119 |
+
key: torch.Tensor,
|
| 120 |
+
value: torch.Tensor,
|
| 121 |
+
attention_mask: Optional[torch.Tensor],
|
| 122 |
+
scaling: float,
|
| 123 |
+
dropout: float = 0.0,
|
| 124 |
+
**kwargs,
|
| 125 |
+
):
|
| 126 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 127 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 128 |
+
|
| 129 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 130 |
+
if attention_mask is not None:
|
| 131 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 132 |
+
attn_weights = attn_weights + causal_mask
|
| 133 |
+
|
| 134 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 135 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 136 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 137 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 138 |
+
|
| 139 |
+
return attn_output, attn_weights
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class GigarLatentAttention(nn.Module):
|
| 143 |
+
"""
|
| 144 |
+
Multi-headed Latent Attention (MLA)
|
| 145 |
+
|
| 146 |
+
Check out the original paper: https://arxiv.org/pdf/2405.04434,
|
| 147 |
+
and the reference implementation: https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
def __init__(self, config: GigarConfig, layer_idx: Optional[int] = None):
|
| 151 |
+
super().__init__()
|
| 152 |
+
self.config = config
|
| 153 |
+
self.hidden_size = config.hidden_size
|
| 154 |
+
self.num_heads = config.num_attention_heads
|
| 155 |
+
self.layer_idx = layer_idx
|
| 156 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
| 157 |
+
|
| 158 |
+
assert config.num_attention_heads == config.num_key_value_heads, (
|
| 159 |
+
"GQA for MLA is not supported (does it even make sense?)"
|
| 160 |
+
)
|
| 161 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 162 |
+
|
| 163 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 164 |
+
self.rope_theta = config.rope_theta
|
| 165 |
+
self.apply_qk_norm = config.apply_qk_norm
|
| 166 |
+
self.attention_dropout = config.attention_dropout
|
| 167 |
+
|
| 168 |
+
assert config.mla_config is not None
|
| 169 |
+
self.qk_nope_head_dim = config.mla_config["qk_nope_head_dim"]
|
| 170 |
+
self.qk_rope_head_dim = config.mla_config["qk_rope_head_dim"]
|
| 171 |
+
self.v_head_dim = config.mla_config["v_head_dim"] # V has no rope part
|
| 172 |
+
self.kv_lora_rank = config.mla_config["kv_lora_rank"]
|
| 173 |
+
self.q_lora_rank = config.mla_config["q_lora_rank"]
|
| 174 |
+
|
| 175 |
+
self.qk_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
|
| 176 |
+
|
| 177 |
+
self.scaling = self.qk_head_dim**-0.5
|
| 178 |
+
|
| 179 |
+
if self.q_lora_rank == 0:
|
| 180 |
+
self.q_proj = nn.Linear(
|
| 181 |
+
self.hidden_size,
|
| 182 |
+
self.num_heads * self.qk_head_dim,
|
| 183 |
+
bias=config.attention_bias,
|
| 184 |
+
)
|
| 185 |
+
else:
|
| 186 |
+
self.dq_proj = nn.Linear(
|
| 187 |
+
self.hidden_size,
|
| 188 |
+
self.q_lora_rank,
|
| 189 |
+
bias=config.attention_bias,
|
| 190 |
+
)
|
| 191 |
+
self.q_norm = GigarRMSNorm(self.q_lora_rank)
|
| 192 |
+
self.uq_proj = nn.Linear(
|
| 193 |
+
self.q_lora_rank,
|
| 194 |
+
self.num_heads * self.qk_head_dim,
|
| 195 |
+
bias=config.attention_bias,
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
self.kv_norm = GigarRMSNorm(self.kv_lora_rank)
|
| 199 |
+
self.dkv_proj = nn.Linear(
|
| 200 |
+
self.hidden_size,
|
| 201 |
+
self.kv_lora_rank,
|
| 202 |
+
bias=config.attention_bias,
|
| 203 |
+
)
|
| 204 |
+
self.uk_proj = nn.Linear(
|
| 205 |
+
config.kv_lora_rank,
|
| 206 |
+
self.num_heads * self.qk_nope_head_dim,
|
| 207 |
+
bias=config.attention_bias,
|
| 208 |
+
)
|
| 209 |
+
self.uv_proj = nn.Linear(
|
| 210 |
+
config.kv_lora_rank,
|
| 211 |
+
self.num_heads * self.v_head_dim,
|
| 212 |
+
bias=config.attention_bias,
|
| 213 |
+
)
|
| 214 |
+
self.kr_proj = nn.Linear(
|
| 215 |
+
self.hidden_size,
|
| 216 |
+
self.num_heads * self.qk_rope_head_dim,
|
| 217 |
+
bias=config.attention_bias,
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
self.o_proj = nn.Linear(
|
| 221 |
+
self.num_heads * self.v_head_dim,
|
| 222 |
+
self.hidden_size,
|
| 223 |
+
bias=config.attention_bias,
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
if self.apply_qk_norm:
|
| 227 |
+
self.qk_q_norm = nn.LayerNorm(self.num_heads * self.qk_head_dim, bias=False)
|
| 228 |
+
self.qk_k_norm = nn.LayerNorm(self.num_heads * self.qk_head_dim, bias=False)
|
| 229 |
+
|
| 230 |
+
config_for_rope = copy.copy(self.config)
|
| 231 |
+
config_for_rope.head_dim = self.config.qk_rope_head_dim
|
| 232 |
+
|
| 233 |
+
self.is_causal = False
|
| 234 |
+
|
| 235 |
+
def _compute_qkv(
|
| 236 |
+
self,
|
| 237 |
+
hidden_states: torch.Tensor,
|
| 238 |
+
):
|
| 239 |
+
"""Compute query, key, and value tensors from hidden states."""
|
| 240 |
+
bsz, seq_len, _ = hidden_states.size()
|
| 241 |
+
|
| 242 |
+
if self.q_lora_rank == 0:
|
| 243 |
+
query = self.q_proj(hidden_states)
|
| 244 |
+
else:
|
| 245 |
+
query = self.uq_proj(self.q_norm(self.dq_proj(hidden_states)))
|
| 246 |
+
|
| 247 |
+
latent = self.dkv_proj(hidden_states)
|
| 248 |
+
latent = self.kv_norm(latent)
|
| 249 |
+
k_rope = self.kr_proj(hidden_states)
|
| 250 |
+
|
| 251 |
+
k_nope = self.uk_proj(latent)
|
| 252 |
+
value = self.uv_proj(latent)
|
| 253 |
+
|
| 254 |
+
if self.apply_qk_norm:
|
| 255 |
+
query = self.qk_q_norm(query).to(query.dtype)
|
| 256 |
+
key = self.qk_k_norm(torch.cat([k_nope, k_rope], dim=-1)).to(k_nope.dtype)
|
| 257 |
+
k_nope, k_rope = torch.split(key, [k_nope.shape[-1], k_rope.shape[-1]], dim=-1)
|
| 258 |
+
|
| 259 |
+
# Reshape tensors
|
| 260 |
+
query = query.view(bsz, seq_len, self.num_heads, self.qk_head_dim).transpose(1, 2)
|
| 261 |
+
k_nope = k_nope.view(bsz, seq_len, self.num_heads, self.qk_nope_head_dim).transpose(1, 2)
|
| 262 |
+
k_rope = k_rope.view(bsz, seq_len, self.num_heads, self.qk_rope_head_dim).transpose(1, 2)
|
| 263 |
+
value = value.view(bsz, seq_len, self.num_heads, self.v_head_dim).transpose(1, 2)
|
| 264 |
+
|
| 265 |
+
q_nope, q_rope = torch.split(query, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
| 266 |
+
|
| 267 |
+
return q_nope, q_rope, k_nope, k_rope, value
|
| 268 |
+
|
| 269 |
+
def forward(
|
| 270 |
+
self,
|
| 271 |
+
hidden_states: torch.Tensor,
|
| 272 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
| 273 |
+
attention_mask: Optional[torch.Tensor],
|
| 274 |
+
past_key_value: Optional[Cache] = None,
|
| 275 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 276 |
+
**kwargs,
|
| 277 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
| 278 |
+
"""
|
| 279 |
+
hidden_states: [bsz, seq_len, hidden_size]
|
| 280 |
+
attention_mask: [bsz, seq_len]
|
| 281 |
+
"""
|
| 282 |
+
batch_size, seq_len, _ = hidden_states.size()
|
| 283 |
+
|
| 284 |
+
q_nope, q_rope, k_nope, k_rope, value_states = self._compute_qkv(hidden_states)
|
| 285 |
+
|
| 286 |
+
# cos, sin = self.rotary_emb(q_rope, seq_len=seq_len)
|
| 287 |
+
cos, sin = position_embeddings
|
| 288 |
+
q_rope, k_rope = apply_rotary_pos_emb(q_rope, k_rope, cos, sin)
|
| 289 |
+
query_states = torch.cat([q_nope, q_rope], dim=-1)
|
| 290 |
+
key_states = torch.cat([k_nope, k_rope], dim=-1)
|
| 291 |
+
|
| 292 |
+
if past_key_value is not None:
|
| 293 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 294 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 295 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 296 |
+
|
| 297 |
+
attention_interface: Callable = eager_attention_forward
|
| 298 |
+
if self.config._attn_implementation != "eager":
|
| 299 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 300 |
+
|
| 301 |
+
attn_output, attn_weights = attention_interface(
|
| 302 |
+
self,
|
| 303 |
+
query_states,
|
| 304 |
+
key_states,
|
| 305 |
+
value_states,
|
| 306 |
+
attention_mask,
|
| 307 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 308 |
+
scaling=self.scaling,
|
| 309 |
+
**kwargs,
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
attn_output = attn_output.reshape(batch_size, seq_len, -1).contiguous()
|
| 313 |
+
attn_output = self.o_proj(attn_output)
|
| 314 |
+
|
| 315 |
+
return attn_output, attn_weights
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
class GigarDecoderLayer(nn.Module):
|
| 319 |
+
def __init__(self, config: GigarConfig, layer_idx: Optional[int] = None):
|
| 320 |
+
super().__init__()
|
| 321 |
+
self.hidden_size = config.hidden_size
|
| 322 |
+
|
| 323 |
+
self.self_attn = GigarLatentAttention(config, layer_idx)
|
| 324 |
+
self.mlp = GigarMLP(config)
|
| 325 |
+
self.input_layernorm = GigarRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 326 |
+
self.post_attention_layernorm = GigarRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 327 |
+
|
| 328 |
+
def forward(
|
| 329 |
+
self,
|
| 330 |
+
hidden_states: torch.Tensor,
|
| 331 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 332 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 333 |
+
past_key_value: Optional[Cache] = None,
|
| 334 |
+
output_attentions: Optional[bool] = False,
|
| 335 |
+
use_cache: Optional[bool] = False,
|
| 336 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 337 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 338 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 339 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 340 |
+
residual = hidden_states
|
| 341 |
+
|
| 342 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 343 |
+
|
| 344 |
+
# Self Attention
|
| 345 |
+
hidden_states, self_attn_weights = self.self_attn(
|
| 346 |
+
hidden_states=hidden_states,
|
| 347 |
+
attention_mask=attention_mask,
|
| 348 |
+
position_ids=position_ids,
|
| 349 |
+
past_key_value=past_key_value,
|
| 350 |
+
output_attentions=output_attentions,
|
| 351 |
+
use_cache=use_cache,
|
| 352 |
+
cache_position=cache_position,
|
| 353 |
+
position_embeddings=position_embeddings,
|
| 354 |
+
**kwargs,
|
| 355 |
+
)
|
| 356 |
+
hidden_states = residual + hidden_states
|
| 357 |
+
|
| 358 |
+
# Fully Connected
|
| 359 |
+
residual = hidden_states
|
| 360 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 361 |
+
hidden_states = self.mlp(hidden_states)
|
| 362 |
+
hidden_states = residual + hidden_states
|
| 363 |
+
|
| 364 |
+
outputs = (hidden_states,)
|
| 365 |
+
if output_attentions:
|
| 366 |
+
outputs += (self_attn_weights,)
|
| 367 |
+
|
| 368 |
+
return outputs
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
class GigarRotaryEmbedding(nn.Module):
|
| 372 |
+
def __init__(self, config: GigarConfig, device=None):
|
| 373 |
+
super().__init__()
|
| 374 |
+
# BC: "rope_type" was originally "type"
|
| 375 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
| 376 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 377 |
+
else:
|
| 378 |
+
self.rope_type = "default"
|
| 379 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 380 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 381 |
+
|
| 382 |
+
self.config = config
|
| 383 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 384 |
+
|
| 385 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 386 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 387 |
+
self.original_inv_freq = self.inv_freq
|
| 388 |
+
|
| 389 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
| 390 |
+
"""
|
| 391 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 392 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
| 393 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 394 |
+
"""
|
| 395 |
+
seq_len = torch.max(position_ids) + 1
|
| 396 |
+
if seq_len > self.max_seq_len_cached: # growth
|
| 397 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
| 398 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
| 399 |
+
self.max_seq_len_cached = seq_len
|
| 400 |
+
|
| 401 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
| 402 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 403 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
| 404 |
+
|
| 405 |
+
@torch.no_grad()
|
| 406 |
+
def forward(self, x, position_ids):
|
| 407 |
+
if "dynamic" in self.rope_type:
|
| 408 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
| 409 |
+
|
| 410 |
+
# Core RoPE block
|
| 411 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 412 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 413 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 414 |
+
device_type = x.device.type
|
| 415 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 416 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 417 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 418 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 419 |
+
cos = emb.cos()
|
| 420 |
+
sin = emb.sin()
|
| 421 |
+
|
| 422 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 423 |
+
cos = cos * self.attention_scaling
|
| 424 |
+
sin = sin * self.attention_scaling
|
| 425 |
+
|
| 426 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
GIGAR_START_DOCSTRING = r"""
|
| 430 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 431 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 432 |
+
etc.)
|
| 433 |
+
|
| 434 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 435 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 436 |
+
and behavior.
|
| 437 |
+
|
| 438 |
+
Parameters:
|
| 439 |
+
config ([`GigarConfig`]):
|
| 440 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 441 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 442 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 443 |
+
"""
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
@add_start_docstrings(
|
| 447 |
+
"The bare Gigar Model outputting raw hidden-states without any specific head on top.",
|
| 448 |
+
GIGAR_START_DOCSTRING,
|
| 449 |
+
)
|
| 450 |
+
class GigarPreTrainedModel(PreTrainedModel):
|
| 451 |
+
config_class = GigarConfig
|
| 452 |
+
base_model_prefix = "model"
|
| 453 |
+
supports_gradient_checkpointing = True
|
| 454 |
+
_no_split_modules = ["GigarDecoderLayer"]
|
| 455 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 456 |
+
_supports_flash_attn_2 = True
|
| 457 |
+
_supports_sdpa = True
|
| 458 |
+
_supports_flex_attn = True
|
| 459 |
+
_supports_cache_class = True
|
| 460 |
+
_supports_quantized_cache = True
|
| 461 |
+
_supports_static_cache = True
|
| 462 |
+
|
| 463 |
+
def _init_weights(self, module):
|
| 464 |
+
std = self.config.initializer_range
|
| 465 |
+
if isinstance(module, nn.Linear):
|
| 466 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 467 |
+
if module.bias is not None:
|
| 468 |
+
module.bias.data.zero_()
|
| 469 |
+
elif isinstance(module, nn.Embedding):
|
| 470 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 471 |
+
if module.padding_idx is not None:
|
| 472 |
+
module.weight.data[module.padding_idx].zero_()
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
GIGAR_INPUTS_DOCSTRING = r"""
|
| 476 |
+
Args:
|
| 477 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 478 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 479 |
+
it.
|
| 480 |
+
|
| 481 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 482 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 483 |
+
|
| 484 |
+
[What are input IDs?](../glossary#input-ids)
|
| 485 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 486 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 487 |
+
|
| 488 |
+
- 1 for tokens that are **not masked**,
|
| 489 |
+
- 0 for tokens that are **masked**.
|
| 490 |
+
|
| 491 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 492 |
+
|
| 493 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 494 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 495 |
+
|
| 496 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 497 |
+
`past_key_values`).
|
| 498 |
+
|
| 499 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 500 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 501 |
+
information on the default strategy.
|
| 502 |
+
|
| 503 |
+
- 1 indicates the head is **not masked**,
|
| 504 |
+
- 0 indicates the head is **masked**.
|
| 505 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 506 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 507 |
+
config.n_positions - 1]`.
|
| 508 |
+
|
| 509 |
+
[What are position IDs?](../glossary#position-ids)
|
| 510 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 511 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 512 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 513 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 514 |
+
|
| 515 |
+
Two formats are allowed:
|
| 516 |
+
- a [`~cache_utils.Cache`] instance, see our
|
| 517 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
| 518 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 519 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 520 |
+
cache format.
|
| 521 |
+
|
| 522 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 523 |
+
legacy cache format will be returned.
|
| 524 |
+
|
| 525 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 526 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 527 |
+
of shape `(batch_size, sequence_length)`.
|
| 528 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 529 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 530 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 531 |
+
model's internal embedding lookup matrix.
|
| 532 |
+
use_cache (`bool`, *optional*):
|
| 533 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 534 |
+
`past_key_values`).
|
| 535 |
+
output_attentions (`bool`, *optional*):
|
| 536 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 537 |
+
tensors for more detail.
|
| 538 |
+
output_hidden_states (`bool`, *optional*):
|
| 539 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 540 |
+
more detail.
|
| 541 |
+
return_dict (`bool`, *optional*):
|
| 542 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 543 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 544 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 545 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 546 |
+
the complete sequence length.
|
| 547 |
+
"""
|
| 548 |
+
|
| 549 |
+
@add_start_docstrings(
|
| 550 |
+
"The bare Gigar Model outputting raw hidden-states without any specific head on top.",
|
| 551 |
+
GIGAR_START_DOCSTRING,
|
| 552 |
+
)
|
| 553 |
+
class GigarModel(GigarPreTrainedModel):
|
| 554 |
+
"""
|
| 555 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GigarDecoderLayer`]
|
| 556 |
+
|
| 557 |
+
Args:
|
| 558 |
+
config: GigarConfig
|
| 559 |
+
"""
|
| 560 |
+
|
| 561 |
+
def __init__(self, config: GigarConfig):
|
| 562 |
+
super().__init__(config)
|
| 563 |
+
self.padding_idx = config.pad_token_id
|
| 564 |
+
self.vocab_size = config.vocab_size
|
| 565 |
+
|
| 566 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 567 |
+
self.layers = nn.ModuleList(
|
| 568 |
+
[GigarDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 569 |
+
)
|
| 570 |
+
self.norm = GigarRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 571 |
+
self.rotary_emb = GigarRotaryEmbedding(config=config)
|
| 572 |
+
self.gradient_checkpointing = False
|
| 573 |
+
|
| 574 |
+
# Initialize weights and apply final processing
|
| 575 |
+
self.post_init()
|
| 576 |
+
|
| 577 |
+
def get_input_embeddings(self):
|
| 578 |
+
return self.embed_tokens
|
| 579 |
+
|
| 580 |
+
def set_input_embeddings(self, value):
|
| 581 |
+
self.embed_tokens = value
|
| 582 |
+
|
| 583 |
+
@add_start_docstrings_to_model_forward(GIGAR_INPUTS_DOCSTRING)
|
| 584 |
+
def forward(
|
| 585 |
+
self,
|
| 586 |
+
input_ids: torch.LongTensor = None,
|
| 587 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 588 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 589 |
+
past_key_values: Optional[Cache] = None,
|
| 590 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 591 |
+
use_cache: Optional[bool] = None,
|
| 592 |
+
output_attentions: Optional[bool] = None,
|
| 593 |
+
output_hidden_states: Optional[bool] = None,
|
| 594 |
+
return_dict: Optional[bool] = None,
|
| 595 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 596 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
| 597 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 598 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 599 |
+
output_hidden_states = (
|
| 600 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 601 |
+
)
|
| 602 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 603 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 604 |
+
|
| 605 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 606 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 607 |
+
|
| 608 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 609 |
+
logger.warning_once(
|
| 610 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 611 |
+
)
|
| 612 |
+
use_cache = False
|
| 613 |
+
|
| 614 |
+
if inputs_embeds is None:
|
| 615 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 616 |
+
|
| 617 |
+
if use_cache and past_key_values is None:
|
| 618 |
+
past_key_values = DynamicCache()
|
| 619 |
+
|
| 620 |
+
if cache_position is None:
|
| 621 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 622 |
+
cache_position = torch.arange(
|
| 623 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
if position_ids is None:
|
| 627 |
+
position_ids = cache_position.unsqueeze(0)
|
| 628 |
+
|
| 629 |
+
attention_mask = self._update_encoder_mask(attention_mask, inputs_embeds)
|
| 630 |
+
|
| 631 |
+
hidden_states = inputs_embeds
|
| 632 |
+
|
| 633 |
+
# create position embeddings to be shared across the decoder layers
|
| 634 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 635 |
+
|
| 636 |
+
# decoder layers
|
| 637 |
+
all_hidden_states = () if output_hidden_states else None
|
| 638 |
+
all_self_attns = () if output_attentions else None
|
| 639 |
+
|
| 640 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 641 |
+
if output_hidden_states:
|
| 642 |
+
all_hidden_states += (hidden_states,)
|
| 643 |
+
|
| 644 |
+
if self.gradient_checkpointing and self.training:
|
| 645 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 646 |
+
decoder_layer.__call__,
|
| 647 |
+
hidden_states,
|
| 648 |
+
attention_mask, # causal_mask
|
| 649 |
+
position_ids,
|
| 650 |
+
past_key_values,
|
| 651 |
+
output_attentions,
|
| 652 |
+
use_cache,
|
| 653 |
+
cache_position,
|
| 654 |
+
position_embeddings,
|
| 655 |
+
)
|
| 656 |
+
else:
|
| 657 |
+
layer_outputs = decoder_layer(
|
| 658 |
+
hidden_states,
|
| 659 |
+
attention_mask=attention_mask, # causal_mask
|
| 660 |
+
position_ids=position_ids,
|
| 661 |
+
past_key_value=past_key_values,
|
| 662 |
+
output_attentions=output_attentions,
|
| 663 |
+
use_cache=use_cache,
|
| 664 |
+
cache_position=cache_position,
|
| 665 |
+
position_embeddings=position_embeddings,
|
| 666 |
+
**flash_attn_kwargs,
|
| 667 |
+
)
|
| 668 |
+
|
| 669 |
+
hidden_states = layer_outputs[0]
|
| 670 |
+
|
| 671 |
+
if output_attentions:
|
| 672 |
+
all_self_attns += (layer_outputs[1],)
|
| 673 |
+
|
| 674 |
+
hidden_states = self.norm(hidden_states)
|
| 675 |
+
|
| 676 |
+
# add hidden states from the last decoder layer
|
| 677 |
+
if output_hidden_states:
|
| 678 |
+
all_hidden_states += (hidden_states,)
|
| 679 |
+
|
| 680 |
+
output = BaseModelOutputWithPast(
|
| 681 |
+
last_hidden_state=hidden_states,
|
| 682 |
+
past_key_values=past_key_values if use_cache else None,
|
| 683 |
+
hidden_states=all_hidden_states,
|
| 684 |
+
attentions=all_self_attns,
|
| 685 |
+
)
|
| 686 |
+
return output if return_dict else output.to_tuple()
|
| 687 |
+
|
| 688 |
+
def _update_encoder_mask(
|
| 689 |
+
self,
|
| 690 |
+
attention_mask: torch.Tensor,
|
| 691 |
+
input_tensor: torch.Tensor,
|
| 692 |
+
):
|
| 693 |
+
# Для flash_attention_2 возвращаем исходную маску
|
| 694 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 695 |
+
if attention_mask is not None and (attention_mask == 0).any():
|
| 696 |
+
return attention_mask
|
| 697 |
+
return None
|
| 698 |
+
|
| 699 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 700 |
+
batch_size, sequence_length = input_tensor.shape[:2]
|
| 701 |
+
|
| 702 |
+
# 1. Создаём базовую маску без ограничений (все токены видят друг друга)
|
| 703 |
+
encoder_mask = torch.full(
|
| 704 |
+
(batch_size, 1, sequence_length, sequence_length),
|
| 705 |
+
fill_value=1.0,
|
| 706 |
+
dtype=dtype,
|
| 707 |
+
device=device
|
| 708 |
+
)
|
| 709 |
+
|
| 710 |
+
# 2. Применяем padding-маску если есть
|
| 711 |
+
if attention_mask is not None:
|
| 712 |
+
# Создаём 4D padding-маску [batch, 1, 1, seq_len]
|
| 713 |
+
padding_mask = attention_mask[:, None, None, :].to(dtype=dtype)
|
| 714 |
+
|
| 715 |
+
# Комбинируем: обнуляем позиции где padding_mask == 0
|
| 716 |
+
encoder_mask = encoder_mask * padding_mask
|
| 717 |
+
|
| 718 |
+
# Конвертируем в формат для softmax (0 = -inf)
|
| 719 |
+
min_dtype = torch.finfo(dtype).min
|
| 720 |
+
encoder_mask = encoder_mask.masked_fill(encoder_mask == 0.0, min_dtype)
|
| 721 |
+
|
| 722 |
+
return encoder_mask
|
| 723 |
+
|
| 724 |
+
def _update_causal_mask(
|
| 725 |
+
self,
|
| 726 |
+
attention_mask: torch.Tensor,
|
| 727 |
+
input_tensor: torch.Tensor,
|
| 728 |
+
cache_position: torch.Tensor,
|
| 729 |
+
past_key_values: Cache,
|
| 730 |
+
output_attentions: bool,
|
| 731 |
+
):
|
| 732 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 733 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
| 734 |
+
return attention_mask
|
| 735 |
+
return None
|
| 736 |
+
|
| 737 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 738 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 739 |
+
# to infer the attention mask.
|
| 740 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 741 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 742 |
+
|
| 743 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 744 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
| 745 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 746 |
+
attention_mask,
|
| 747 |
+
inputs_embeds=input_tensor,
|
| 748 |
+
past_key_values_length=past_seen_tokens,
|
| 749 |
+
is_training=self.training,
|
| 750 |
+
):
|
| 751 |
+
return None
|
| 752 |
+
|
| 753 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 754 |
+
sequence_length = input_tensor.shape[1]
|
| 755 |
+
if using_static_cache:
|
| 756 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 757 |
+
else:
|
| 758 |
+
target_length = (
|
| 759 |
+
attention_mask.shape[-1]
|
| 760 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 761 |
+
else past_seen_tokens + sequence_length + 1
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 765 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 766 |
+
attention_mask,
|
| 767 |
+
sequence_length=sequence_length,
|
| 768 |
+
target_length=target_length,
|
| 769 |
+
dtype=dtype,
|
| 770 |
+
device=device,
|
| 771 |
+
cache_position=cache_position,
|
| 772 |
+
batch_size=input_tensor.shape[0],
|
| 773 |
+
)
|
| 774 |
+
|
| 775 |
+
if (
|
| 776 |
+
self.config._attn_implementation == "sdpa"
|
| 777 |
+
and attention_mask is not None
|
| 778 |
+
and attention_mask.device.type == "cuda"
|
| 779 |
+
and not output_attentions
|
| 780 |
+
):
|
| 781 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 782 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 783 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 784 |
+
min_dtype = torch.finfo(dtype).min
|
| 785 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
| 786 |
+
|
| 787 |
+
return causal_mask
|
| 788 |
+
|
| 789 |
+
@staticmethod
|
| 790 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 791 |
+
attention_mask: torch.Tensor,
|
| 792 |
+
sequence_length: int,
|
| 793 |
+
target_length: int,
|
| 794 |
+
dtype: torch.dtype,
|
| 795 |
+
device: torch.device,
|
| 796 |
+
cache_position: torch.Tensor,
|
| 797 |
+
batch_size: int,
|
| 798 |
+
**kwargs,
|
| 799 |
+
):
|
| 800 |
+
"""
|
| 801 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 802 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 803 |
+
|
| 804 |
+
Args:
|
| 805 |
+
attention_mask (`torch.Tensor`):
|
| 806 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
| 807 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
| 808 |
+
sequence_length (`int`):
|
| 809 |
+
The sequence length being processed.
|
| 810 |
+
target_length (`int`):
|
| 811 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
| 812 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
| 813 |
+
dtype (`torch.dtype`):
|
| 814 |
+
The dtype to use for the 4D attention mask.
|
| 815 |
+
device (`torch.device`):
|
| 816 |
+
The device to plcae the 4D attention mask on.
|
| 817 |
+
cache_position (`torch.Tensor`):
|
| 818 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 819 |
+
batch_size (`torch.Tensor`):
|
| 820 |
+
Batch size.
|
| 821 |
+
"""
|
| 822 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 823 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 824 |
+
causal_mask = attention_mask
|
| 825 |
+
else:
|
| 826 |
+
min_dtype = torch.finfo(dtype).min
|
| 827 |
+
causal_mask = torch.full(
|
| 828 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
| 829 |
+
)
|
| 830 |
+
if sequence_length != 1:
|
| 831 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 832 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 833 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 834 |
+
if attention_mask is not None:
|
| 835 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 836 |
+
mask_length = attention_mask.shape[-1]
|
| 837 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 838 |
+
padding_mask = padding_mask == 0
|
| 839 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 840 |
+
padding_mask, min_dtype
|
| 841 |
+
)
|
| 842 |
+
|
| 843 |
+
return causal_mask
|
| 844 |
+
|
| 845 |
+
|
| 846 |
+
class FeedForward(nn.Module):
|
| 847 |
+
def __init__(self, dim, mult = 4):
|
| 848 |
+
super().__init__()
|
| 849 |
+
self.hidden_size = dim
|
| 850 |
+
self.intermediate_size = dim * mult
|
| 851 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 852 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 853 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 854 |
+
self.act_fn = nn.SiLU()
|
| 855 |
+
|
| 856 |
+
def forward(self, x):
|
| 857 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 858 |
+
|
| 859 |
+
|
| 860 |
+
class Attention(nn.Module):
|
| 861 |
+
def __init__(self, query_dimension, context_dimension=None, num_heads=8, head_dim=64):
|
| 862 |
+
super().__init__()
|
| 863 |
+
inner_dimension = head_dim * num_heads
|
| 864 |
+
context_dimension = context_dimension if context_dimension is not None else query_dimension
|
| 865 |
+
|
| 866 |
+
self.scaling_factor = head_dim ** -0.5
|
| 867 |
+
self.num_heads = num_heads
|
| 868 |
+
|
| 869 |
+
self.to_q = nn.Linear(query_dimension, inner_dimension, bias=False)
|
| 870 |
+
self.to_kv = nn.Linear(context_dimension, inner_dimension * 2, bias=False)
|
| 871 |
+
self.to_out = nn.Linear(inner_dimension, query_dimension, bias=False)
|
| 872 |
+
|
| 873 |
+
def forward(self, input_tensor, context=None, attention_mask=None):
|
| 874 |
+
batch_size, seq_len, _ = input_tensor.shape
|
| 875 |
+
num_heads = self.num_heads
|
| 876 |
+
|
| 877 |
+
# Project input to query
|
| 878 |
+
query = self.to_q(input_tensor)
|
| 879 |
+
|
| 880 |
+
# Use input as context if not provided
|
| 881 |
+
context = input_tensor if context is None else context
|
| 882 |
+
key, value = self.to_kv(context).chunk(2, dim=-1)
|
| 883 |
+
|
| 884 |
+
# Rearrange for multi-head attention
|
| 885 |
+
query = rearrange(query, 'b n (h d) -> (b h) n d', h=num_heads)
|
| 886 |
+
key = rearrange(key, 'b n (h d) -> (b h) n d', h=num_heads)
|
| 887 |
+
value = rearrange(value, 'b n (h d) -> (b h) n d', h=num_heads)
|
| 888 |
+
|
| 889 |
+
# Compute scaled dot-product attention
|
| 890 |
+
with torch.backends.cuda.sdp_kernel(
|
| 891 |
+
enable_flash=True,
|
| 892 |
+
enable_math=True,
|
| 893 |
+
enable_mem_efficient=True
|
| 894 |
+
):
|
| 895 |
+
attention_output = F.scaled_dot_product_attention(query, key, value)
|
| 896 |
+
|
| 897 |
+
# Rearrange back to original shape
|
| 898 |
+
attention_output = rearrange(attention_output, '(b h) n d -> b n (h d)', h=num_heads)
|
| 899 |
+
|
| 900 |
+
return self.to_out(attention_output)
|
| 901 |
+
|
| 902 |
+
|
| 903 |
+
class LatentAttentionModel(PreTrainedModel):
|
| 904 |
+
config_class = LatentAttentionConfig
|
| 905 |
+
|
| 906 |
+
def __init__(self, configuration: LatentAttentionConfig):
|
| 907 |
+
super().__init__(configuration)
|
| 908 |
+
|
| 909 |
+
# Extract configuration parameters
|
| 910 |
+
num_latents = configuration.num_latents_value
|
| 911 |
+
latent_dimension = configuration.latent_dim
|
| 912 |
+
cross_attention_heads = configuration.num_cross_heads
|
| 913 |
+
cross_head_dimension = configuration.cross_dim_head
|
| 914 |
+
hidden_dimension = configuration.hidden_dim
|
| 915 |
+
|
| 916 |
+
# Initialize cross-attention components
|
| 917 |
+
self.cross_attend_blocks = nn.ModuleList([
|
| 918 |
+
Attention(
|
| 919 |
+
query_dimension=latent_dimension,
|
| 920 |
+
context_dimension=hidden_dimension,
|
| 921 |
+
num_heads=cross_attention_heads,
|
| 922 |
+
head_dim=cross_head_dimension
|
| 923 |
+
),
|
| 924 |
+
FeedForward(latent_dimension)
|
| 925 |
+
])
|
| 926 |
+
|
| 927 |
+
# Register learnable latents as model parameter
|
| 928 |
+
self.latents = nn.Parameter(torch.randn(num_latents, latent_dimension))
|
| 929 |
+
|
| 930 |
+
def forward(self, hidden_states, attention_mask: Optional[torch.Tensor] = None):
|
| 931 |
+
cross_attention, feed_forward = self.cross_attend_blocks
|
| 932 |
+
|
| 933 |
+
batch_size, device = hidden_states.size(0), hidden_states.device
|
| 934 |
+
|
| 935 |
+
# Expand latents to match batch size
|
| 936 |
+
expanded_latents = self.latents.repeat(batch_size, 1, 1)
|
| 937 |
+
|
| 938 |
+
# Apply cross-attention with residual connection
|
| 939 |
+
attended_output = cross_attention(
|
| 940 |
+
hidden_states, context=expanded_latents, attention_mask=attention_mask) + hidden_states
|
| 941 |
+
|
| 942 |
+
# Apply feed-forward with residual connection
|
| 943 |
+
processed_output = feed_forward(attended_output) + attended_output
|
| 944 |
+
|
| 945 |
+
return processed_output
|
| 946 |
+
|
| 947 |
+
|
| 948 |
+
class GigarEmbedModel(PreTrainedModel):
|
| 949 |
+
config_class = GigarEmbedConfig
|
| 950 |
+
_supports_flash_attn_2 = True
|
| 951 |
+
_no_split_modules = ["GigarDecoderLayer", "LatentAttentionModel"]
|
| 952 |
+
|
| 953 |
+
def __init__(self, configuration: GigarEmbedConfig):
|
| 954 |
+
super().__init__(configuration)
|
| 955 |
+
|
| 956 |
+
# Initialize latent attention model
|
| 957 |
+
self.latent_attention_model = AutoModel.from_config(
|
| 958 |
+
configuration.latent_attention_config
|
| 959 |
+
)
|
| 960 |
+
|
| 961 |
+
self.tokenizer, self.text_encoder = None, None
|
| 962 |
+
if configuration.text_config is not None:
|
| 963 |
+
# Initialize text model if provided in config
|
| 964 |
+
self.model = AutoModel.from_config(configuration.text_config)
|
| 965 |
+
|
| 966 |
+
# Initialize tokenizer if text config is available
|
| 967 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 968 |
+
configuration.text_config.name_or_path
|
| 969 |
+
)
|
| 970 |
+
|
| 971 |
+
# Set configuration parameters
|
| 972 |
+
self.padding_side = configuration.padding_side
|
| 973 |
+
self.add_eos = configuration.add_eos
|
| 974 |
+
self.mask_type = configuration.mask_type
|
| 975 |
+
|
| 976 |
+
# Add padding token if configured
|
| 977 |
+
if configuration.add_pad_token and self.tokenizer is not None:
|
| 978 |
+
self.add_pad_token()
|
| 979 |
+
|
| 980 |
+
def add_pad_token(self):
|
| 981 |
+
self.tokenizer.pad_token_id = 0
|
| 982 |
+
self.tokenizer.padding_side = self.padding_side
|
| 983 |
+
|
| 984 |
+
def gradient_checkpointing_enable(self, *args, **kwargs):
|
| 985 |
+
self.model.gradient_checkpointing_enable(*args, **kwargs)
|
| 986 |
+
|
| 987 |
+
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor,
|
| 988 |
+
return_embeddings: bool = False, **kwargs):
|
| 989 |
+
kwargs.pop('token_type_ids', None)
|
| 990 |
+
|
| 991 |
+
with torch.autocast('cuda', dtype=torch.bfloat16):
|
| 992 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, **kwargs)
|
| 993 |
+
|
| 994 |
+
last_hidden = self.latent_attention_model(outputs.last_hidden_state, attention_mask)
|
| 995 |
+
|
| 996 |
+
if return_embeddings:
|
| 997 |
+
return self.mean_pool(last_hidden, attention_mask)
|
| 998 |
+
|
| 999 |
+
return BaseModelOutputWithPast(last_hidden_state=last_hidden)
|
| 1000 |
+
|
| 1001 |
+
def mean_pool(self, last_hidden: torch.Tensor, attention_mask: torch.Tensor):
|
| 1002 |
+
last_hidden = last_hidden.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
| 1003 |
+
embeddings = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
| 1004 |
+
return F.normalize(embeddings, p=2, dim=-1)
|
| 1005 |
+
|
| 1006 |
+
|
| 1007 |
+
## AutoModel Register
|
| 1008 |
+
AutoModel.register(GigarConfig, GigarModel)
|
| 1009 |
+
AutoModel.register(GigarEmbedConfig, GigarEmbedModel)
|
| 1010 |
+
AutoModel.register(LatentAttentionConfig, LatentAttentionModel)
|
| 1011 |
+
|
| 1012 |
+
## Register for auto class
|
| 1013 |
+
GigarModel.register_for_auto_class("AutoModel")
|
| 1014 |
+
GigarEmbedModel.register_for_auto_class("AutoModel")
|
| 1015 |
+
LatentAttentionModel.register_for_auto_class("AutoModel")
|
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"quant_method": "bitsandbytes",
|
| 3 |
+
"_load_in_8bit": false,
|
| 4 |
+
"_load_in_4bit": true,
|
| 5 |
+
"llm_int8_threshold": 6.0,
|
| 6 |
+
"llm_int8_skip_modules": null,
|
| 7 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
| 8 |
+
"llm_int8_has_fp16_weight": false,
|
| 9 |
+
"bnb_4bit_quant_type": "nf4",
|
| 10 |
+
"bnb_4bit_use_double_quant": true,
|
| 11 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
| 12 |
+
"bnb_4bit_quant_storage": "uint8",
|
| 13 |
+
"load_in_4bit": true,
|
| 14 |
+
"load_in_8bit": false
|
| 15 |
+
}
|
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "<unk>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ec0a1cffcc9192f5ee3d7b273673a062918055238bda3d23cfb6d2512e947ff
|
| 3 |
+
size 10728325
|
|
@@ -0,0 +1,2092 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<unk>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<s>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"128000": {
|
| 28 |
+
"content": "<|gigatoken_1|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"128001": {
|
| 36 |
+
"content": "<|gigatoken_2|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"128002": {
|
| 44 |
+
"content": "<|gigatoken_3|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"128003": {
|
| 52 |
+
"content": "<|gigatoken_4|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"128004": {
|
| 60 |
+
"content": "<|gigatoken_5|>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"128005": {
|
| 68 |
+
"content": "<|gigatoken_6|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"128006": {
|
| 76 |
+
"content": "<|gigatoken_7|>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"128007": {
|
| 84 |
+
"content": "<|gigatoken_8|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"128008": {
|
| 92 |
+
"content": "<|gigatoken_9|>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"128009": {
|
| 100 |
+
"content": "<|gigatoken_10|>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"128010": {
|
| 108 |
+
"content": "<|gigatoken_11|>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"128011": {
|
| 116 |
+
"content": "<|gigatoken_12|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"128012": {
|
| 124 |
+
"content": "<|gigatoken_13|>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"128013": {
|
| 132 |
+
"content": "<|gigatoken_14|>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"128014": {
|
| 140 |
+
"content": "<|gigatoken_15|>",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"128015": {
|
| 148 |
+
"content": "<|gigatoken_16|>",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"128016": {
|
| 156 |
+
"content": "<|gigatoken_17|>",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"128017": {
|
| 164 |
+
"content": "<|gigatoken_18|>",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
},
|
| 171 |
+
"128018": {
|
| 172 |
+
"content": "<|gigatoken_19|>",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": true
|
| 178 |
+
},
|
| 179 |
+
"128019": {
|
| 180 |
+
"content": "<|gigatoken_20|>",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": false,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": true
|
| 186 |
+
},
|
| 187 |
+
"128020": {
|
| 188 |
+
"content": "<|gigatoken_21|>",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": false,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": true
|
| 194 |
+
},
|
| 195 |
+
"128021": {
|
| 196 |
+
"content": "<|gigatoken_22|>",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": false,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": true
|
| 202 |
+
},
|
| 203 |
+
"128022": {
|
| 204 |
+
"content": "<|gigatoken_23|>",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": false,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": true
|
| 210 |
+
},
|
| 211 |
+
"128023": {
|
| 212 |
+
"content": "<|gigatoken_24|>",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": false,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": true
|
| 218 |
+
},
|
| 219 |
+
"128024": {
|
| 220 |
+
"content": "<|gigatoken_25|>",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"128025": {
|
| 228 |
+
"content": "<|gigatoken_26|>",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"128026": {
|
| 236 |
+
"content": "<|gigatoken_27|>",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"128027": {
|
| 244 |
+
"content": "<|gigatoken_28|>",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"128028": {
|
| 252 |
+
"content": "<|gigatoken_29|>",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"128029": {
|
| 260 |
+
"content": "<|gigatoken_30|>",
|
| 261 |
+
"lstrip": false,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"128030": {
|
| 268 |
+
"content": "<|gigatoken_31|>",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": false,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": true
|
| 274 |
+
},
|
| 275 |
+
"128031": {
|
| 276 |
+
"content": "<|gigatoken_32|>",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": false,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": true
|
| 282 |
+
},
|
| 283 |
+
"128032": {
|
| 284 |
+
"content": "<|gigatoken_33|>",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": false,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": true
|
| 290 |
+
},
|
| 291 |
+
"128033": {
|
| 292 |
+
"content": "<|gigatoken_34|>",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": false,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": true
|
| 298 |
+
},
|
| 299 |
+
"128034": {
|
| 300 |
+
"content": "<|gigatoken_35|>",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": false,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": true
|
| 306 |
+
},
|
| 307 |
+
"128035": {
|
| 308 |
+
"content": "<|gigatoken_36|>",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": false,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": true
|
| 314 |
+
},
|
| 315 |
+
"128036": {
|
| 316 |
+
"content": "<|gigatoken_37|>",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": false,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": true
|
| 322 |
+
},
|
| 323 |
+
"128037": {
|
| 324 |
+
"content": "<|gigatoken_38|>",
|
| 325 |
+
"lstrip": false,
|
| 326 |
+
"normalized": false,
|
| 327 |
+
"rstrip": false,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": true
|
| 330 |
+
},
|
| 331 |
+
"128038": {
|
| 332 |
+
"content": "<|gigatoken_39|>",
|
| 333 |
+
"lstrip": false,
|
| 334 |
+
"normalized": false,
|
| 335 |
+
"rstrip": false,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": true
|
| 338 |
+
},
|
| 339 |
+
"128039": {
|
| 340 |
+
"content": "<|gigatoken_40|>",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": false,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": true
|
| 346 |
+
},
|
| 347 |
+
"128040": {
|
| 348 |
+
"content": "<|gigatoken_41|>",
|
| 349 |
+
"lstrip": false,
|
| 350 |
+
"normalized": false,
|
| 351 |
+
"rstrip": false,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": true
|
| 354 |
+
},
|
| 355 |
+
"128041": {
|
| 356 |
+
"content": "<|gigatoken_42|>",
|
| 357 |
+
"lstrip": false,
|
| 358 |
+
"normalized": false,
|
| 359 |
+
"rstrip": false,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": true
|
| 362 |
+
},
|
| 363 |
+
"128042": {
|
| 364 |
+
"content": "<|gigatoken_43|>",
|
| 365 |
+
"lstrip": false,
|
| 366 |
+
"normalized": false,
|
| 367 |
+
"rstrip": false,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": true
|
| 370 |
+
},
|
| 371 |
+
"128043": {
|
| 372 |
+
"content": "<|gigatoken_44|>",
|
| 373 |
+
"lstrip": false,
|
| 374 |
+
"normalized": false,
|
| 375 |
+
"rstrip": false,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": true
|
| 378 |
+
},
|
| 379 |
+
"128044": {
|
| 380 |
+
"content": "<|gigatoken_45|>",
|
| 381 |
+
"lstrip": false,
|
| 382 |
+
"normalized": false,
|
| 383 |
+
"rstrip": false,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": true
|
| 386 |
+
},
|
| 387 |
+
"128045": {
|
| 388 |
+
"content": "<|gigatoken_46|>",
|
| 389 |
+
"lstrip": false,
|
| 390 |
+
"normalized": false,
|
| 391 |
+
"rstrip": false,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": true
|
| 394 |
+
},
|
| 395 |
+
"128046": {
|
| 396 |
+
"content": "<|gigatoken_47|>",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": false,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": true
|
| 402 |
+
},
|
| 403 |
+
"128047": {
|
| 404 |
+
"content": "<|gigatoken_48|>",
|
| 405 |
+
"lstrip": false,
|
| 406 |
+
"normalized": false,
|
| 407 |
+
"rstrip": false,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": true
|
| 410 |
+
},
|
| 411 |
+
"128048": {
|
| 412 |
+
"content": "<|gigatoken_49|>",
|
| 413 |
+
"lstrip": false,
|
| 414 |
+
"normalized": false,
|
| 415 |
+
"rstrip": false,
|
| 416 |
+
"single_word": false,
|
| 417 |
+
"special": true
|
| 418 |
+
},
|
| 419 |
+
"128049": {
|
| 420 |
+
"content": "<|gigatoken_50|>",
|
| 421 |
+
"lstrip": false,
|
| 422 |
+
"normalized": false,
|
| 423 |
+
"rstrip": false,
|
| 424 |
+
"single_word": false,
|
| 425 |
+
"special": true
|
| 426 |
+
},
|
| 427 |
+
"128050": {
|
| 428 |
+
"content": "<|gigatoken_51|>",
|
| 429 |
+
"lstrip": false,
|
| 430 |
+
"normalized": false,
|
| 431 |
+
"rstrip": false,
|
| 432 |
+
"single_word": false,
|
| 433 |
+
"special": true
|
| 434 |
+
},
|
| 435 |
+
"128051": {
|
| 436 |
+
"content": "<|gigatoken_52|>",
|
| 437 |
+
"lstrip": false,
|
| 438 |
+
"normalized": false,
|
| 439 |
+
"rstrip": false,
|
| 440 |
+
"single_word": false,
|
| 441 |
+
"special": true
|
| 442 |
+
},
|
| 443 |
+
"128052": {
|
| 444 |
+
"content": "<|gigatoken_53|>",
|
| 445 |
+
"lstrip": false,
|
| 446 |
+
"normalized": false,
|
| 447 |
+
"rstrip": false,
|
| 448 |
+
"single_word": false,
|
| 449 |
+
"special": true
|
| 450 |
+
},
|
| 451 |
+
"128053": {
|
| 452 |
+
"content": "<|gigatoken_54|>",
|
| 453 |
+
"lstrip": false,
|
| 454 |
+
"normalized": false,
|
| 455 |
+
"rstrip": false,
|
| 456 |
+
"single_word": false,
|
| 457 |
+
"special": true
|
| 458 |
+
},
|
| 459 |
+
"128054": {
|
| 460 |
+
"content": "<|gigatoken_55|>",
|
| 461 |
+
"lstrip": false,
|
| 462 |
+
"normalized": false,
|
| 463 |
+
"rstrip": false,
|
| 464 |
+
"single_word": false,
|
| 465 |
+
"special": true
|
| 466 |
+
},
|
| 467 |
+
"128055": {
|
| 468 |
+
"content": "<|gigatoken_56|>",
|
| 469 |
+
"lstrip": false,
|
| 470 |
+
"normalized": false,
|
| 471 |
+
"rstrip": false,
|
| 472 |
+
"single_word": false,
|
| 473 |
+
"special": true
|
| 474 |
+
},
|
| 475 |
+
"128056": {
|
| 476 |
+
"content": "<|gigatoken_57|>",
|
| 477 |
+
"lstrip": false,
|
| 478 |
+
"normalized": false,
|
| 479 |
+
"rstrip": false,
|
| 480 |
+
"single_word": false,
|
| 481 |
+
"special": true
|
| 482 |
+
},
|
| 483 |
+
"128057": {
|
| 484 |
+
"content": "<|gigatoken_58|>",
|
| 485 |
+
"lstrip": false,
|
| 486 |
+
"normalized": false,
|
| 487 |
+
"rstrip": false,
|
| 488 |
+
"single_word": false,
|
| 489 |
+
"special": true
|
| 490 |
+
},
|
| 491 |
+
"128058": {
|
| 492 |
+
"content": "<|gigatoken_59|>",
|
| 493 |
+
"lstrip": false,
|
| 494 |
+
"normalized": false,
|
| 495 |
+
"rstrip": false,
|
| 496 |
+
"single_word": false,
|
| 497 |
+
"special": true
|
| 498 |
+
},
|
| 499 |
+
"128059": {
|
| 500 |
+
"content": "<|gigatoken_60|>",
|
| 501 |
+
"lstrip": false,
|
| 502 |
+
"normalized": false,
|
| 503 |
+
"rstrip": false,
|
| 504 |
+
"single_word": false,
|
| 505 |
+
"special": true
|
| 506 |
+
},
|
| 507 |
+
"128060": {
|
| 508 |
+
"content": "<|gigatoken_61|>",
|
| 509 |
+
"lstrip": false,
|
| 510 |
+
"normalized": false,
|
| 511 |
+
"rstrip": false,
|
| 512 |
+
"single_word": false,
|
| 513 |
+
"special": true
|
| 514 |
+
},
|
| 515 |
+
"128061": {
|
| 516 |
+
"content": "<|gigatoken_62|>",
|
| 517 |
+
"lstrip": false,
|
| 518 |
+
"normalized": false,
|
| 519 |
+
"rstrip": false,
|
| 520 |
+
"single_word": false,
|
| 521 |
+
"special": true
|
| 522 |
+
},
|
| 523 |
+
"128062": {
|
| 524 |
+
"content": "<|gigatoken_63|>",
|
| 525 |
+
"lstrip": false,
|
| 526 |
+
"normalized": false,
|
| 527 |
+
"rstrip": false,
|
| 528 |
+
"single_word": false,
|
| 529 |
+
"special": true
|
| 530 |
+
},
|
| 531 |
+
"128063": {
|
| 532 |
+
"content": "<|gigatoken_64|>",
|
| 533 |
+
"lstrip": false,
|
| 534 |
+
"normalized": false,
|
| 535 |
+
"rstrip": false,
|
| 536 |
+
"single_word": false,
|
| 537 |
+
"special": true
|
| 538 |
+
},
|
| 539 |
+
"128064": {
|
| 540 |
+
"content": "<|gigatoken_65|>",
|
| 541 |
+
"lstrip": false,
|
| 542 |
+
"normalized": false,
|
| 543 |
+
"rstrip": false,
|
| 544 |
+
"single_word": false,
|
| 545 |
+
"special": true
|
| 546 |
+
},
|
| 547 |
+
"128065": {
|
| 548 |
+
"content": "<|gigatoken_66|>",
|
| 549 |
+
"lstrip": false,
|
| 550 |
+
"normalized": false,
|
| 551 |
+
"rstrip": false,
|
| 552 |
+
"single_word": false,
|
| 553 |
+
"special": true
|
| 554 |
+
},
|
| 555 |
+
"128066": {
|
| 556 |
+
"content": "<|gigatoken_67|>",
|
| 557 |
+
"lstrip": false,
|
| 558 |
+
"normalized": false,
|
| 559 |
+
"rstrip": false,
|
| 560 |
+
"single_word": false,
|
| 561 |
+
"special": true
|
| 562 |
+
},
|
| 563 |
+
"128067": {
|
| 564 |
+
"content": "<|gigatoken_68|>",
|
| 565 |
+
"lstrip": false,
|
| 566 |
+
"normalized": false,
|
| 567 |
+
"rstrip": false,
|
| 568 |
+
"single_word": false,
|
| 569 |
+
"special": true
|
| 570 |
+
},
|
| 571 |
+
"128068": {
|
| 572 |
+
"content": "<|gigatoken_69|>",
|
| 573 |
+
"lstrip": false,
|
| 574 |
+
"normalized": false,
|
| 575 |
+
"rstrip": false,
|
| 576 |
+
"single_word": false,
|
| 577 |
+
"special": true
|
| 578 |
+
},
|
| 579 |
+
"128069": {
|
| 580 |
+
"content": "<|gigatoken_70|>",
|
| 581 |
+
"lstrip": false,
|
| 582 |
+
"normalized": false,
|
| 583 |
+
"rstrip": false,
|
| 584 |
+
"single_word": false,
|
| 585 |
+
"special": true
|
| 586 |
+
},
|
| 587 |
+
"128070": {
|
| 588 |
+
"content": "<|gigatoken_71|>",
|
| 589 |
+
"lstrip": false,
|
| 590 |
+
"normalized": false,
|
| 591 |
+
"rstrip": false,
|
| 592 |
+
"single_word": false,
|
| 593 |
+
"special": true
|
| 594 |
+
},
|
| 595 |
+
"128071": {
|
| 596 |
+
"content": "<|gigatoken_72|>",
|
| 597 |
+
"lstrip": false,
|
| 598 |
+
"normalized": false,
|
| 599 |
+
"rstrip": false,
|
| 600 |
+
"single_word": false,
|
| 601 |
+
"special": true
|
| 602 |
+
},
|
| 603 |
+
"128072": {
|
| 604 |
+
"content": "<|gigatoken_73|>",
|
| 605 |
+
"lstrip": false,
|
| 606 |
+
"normalized": false,
|
| 607 |
+
"rstrip": false,
|
| 608 |
+
"single_word": false,
|
| 609 |
+
"special": true
|
| 610 |
+
},
|
| 611 |
+
"128073": {
|
| 612 |
+
"content": "<|gigatoken_74|>",
|
| 613 |
+
"lstrip": false,
|
| 614 |
+
"normalized": false,
|
| 615 |
+
"rstrip": false,
|
| 616 |
+
"single_word": false,
|
| 617 |
+
"special": true
|
| 618 |
+
},
|
| 619 |
+
"128074": {
|
| 620 |
+
"content": "<|gigatoken_75|>",
|
| 621 |
+
"lstrip": false,
|
| 622 |
+
"normalized": false,
|
| 623 |
+
"rstrip": false,
|
| 624 |
+
"single_word": false,
|
| 625 |
+
"special": true
|
| 626 |
+
},
|
| 627 |
+
"128075": {
|
| 628 |
+
"content": "<|gigatoken_76|>",
|
| 629 |
+
"lstrip": false,
|
| 630 |
+
"normalized": false,
|
| 631 |
+
"rstrip": false,
|
| 632 |
+
"single_word": false,
|
| 633 |
+
"special": true
|
| 634 |
+
},
|
| 635 |
+
"128076": {
|
| 636 |
+
"content": "<|gigatoken_77|>",
|
| 637 |
+
"lstrip": false,
|
| 638 |
+
"normalized": false,
|
| 639 |
+
"rstrip": false,
|
| 640 |
+
"single_word": false,
|
| 641 |
+
"special": true
|
| 642 |
+
},
|
| 643 |
+
"128077": {
|
| 644 |
+
"content": "<|gigatoken_78|>",
|
| 645 |
+
"lstrip": false,
|
| 646 |
+
"normalized": false,
|
| 647 |
+
"rstrip": false,
|
| 648 |
+
"single_word": false,
|
| 649 |
+
"special": true
|
| 650 |
+
},
|
| 651 |
+
"128078": {
|
| 652 |
+
"content": "<|gigatoken_79|>",
|
| 653 |
+
"lstrip": false,
|
| 654 |
+
"normalized": false,
|
| 655 |
+
"rstrip": false,
|
| 656 |
+
"single_word": false,
|
| 657 |
+
"special": true
|
| 658 |
+
},
|
| 659 |
+
"128079": {
|
| 660 |
+
"content": "<|gigatoken_80|>",
|
| 661 |
+
"lstrip": false,
|
| 662 |
+
"normalized": false,
|
| 663 |
+
"rstrip": false,
|
| 664 |
+
"single_word": false,
|
| 665 |
+
"special": true
|
| 666 |
+
},
|
| 667 |
+
"128080": {
|
| 668 |
+
"content": "<|gigatoken_81|>",
|
| 669 |
+
"lstrip": false,
|
| 670 |
+
"normalized": false,
|
| 671 |
+
"rstrip": false,
|
| 672 |
+
"single_word": false,
|
| 673 |
+
"special": true
|
| 674 |
+
},
|
| 675 |
+
"128081": {
|
| 676 |
+
"content": "<|gigatoken_82|>",
|
| 677 |
+
"lstrip": false,
|
| 678 |
+
"normalized": false,
|
| 679 |
+
"rstrip": false,
|
| 680 |
+
"single_word": false,
|
| 681 |
+
"special": true
|
| 682 |
+
},
|
| 683 |
+
"128082": {
|
| 684 |
+
"content": "<|gigatoken_83|>",
|
| 685 |
+
"lstrip": false,
|
| 686 |
+
"normalized": false,
|
| 687 |
+
"rstrip": false,
|
| 688 |
+
"single_word": false,
|
| 689 |
+
"special": true
|
| 690 |
+
},
|
| 691 |
+
"128083": {
|
| 692 |
+
"content": "<|gigatoken_84|>",
|
| 693 |
+
"lstrip": false,
|
| 694 |
+
"normalized": false,
|
| 695 |
+
"rstrip": false,
|
| 696 |
+
"single_word": false,
|
| 697 |
+
"special": true
|
| 698 |
+
},
|
| 699 |
+
"128084": {
|
| 700 |
+
"content": "<|gigatoken_85|>",
|
| 701 |
+
"lstrip": false,
|
| 702 |
+
"normalized": false,
|
| 703 |
+
"rstrip": false,
|
| 704 |
+
"single_word": false,
|
| 705 |
+
"special": true
|
| 706 |
+
},
|
| 707 |
+
"128085": {
|
| 708 |
+
"content": "<|gigatoken_86|>",
|
| 709 |
+
"lstrip": false,
|
| 710 |
+
"normalized": false,
|
| 711 |
+
"rstrip": false,
|
| 712 |
+
"single_word": false,
|
| 713 |
+
"special": true
|
| 714 |
+
},
|
| 715 |
+
"128086": {
|
| 716 |
+
"content": "<|gigatoken_87|>",
|
| 717 |
+
"lstrip": false,
|
| 718 |
+
"normalized": false,
|
| 719 |
+
"rstrip": false,
|
| 720 |
+
"single_word": false,
|
| 721 |
+
"special": true
|
| 722 |
+
},
|
| 723 |
+
"128087": {
|
| 724 |
+
"content": "<|gigatoken_88|>",
|
| 725 |
+
"lstrip": false,
|
| 726 |
+
"normalized": false,
|
| 727 |
+
"rstrip": false,
|
| 728 |
+
"single_word": false,
|
| 729 |
+
"special": true
|
| 730 |
+
},
|
| 731 |
+
"128088": {
|
| 732 |
+
"content": "<|gigatoken_89|>",
|
| 733 |
+
"lstrip": false,
|
| 734 |
+
"normalized": false,
|
| 735 |
+
"rstrip": false,
|
| 736 |
+
"single_word": false,
|
| 737 |
+
"special": true
|
| 738 |
+
},
|
| 739 |
+
"128089": {
|
| 740 |
+
"content": "<|gigatoken_90|>",
|
| 741 |
+
"lstrip": false,
|
| 742 |
+
"normalized": false,
|
| 743 |
+
"rstrip": false,
|
| 744 |
+
"single_word": false,
|
| 745 |
+
"special": true
|
| 746 |
+
},
|
| 747 |
+
"128090": {
|
| 748 |
+
"content": "<|gigatoken_91|>",
|
| 749 |
+
"lstrip": false,
|
| 750 |
+
"normalized": false,
|
| 751 |
+
"rstrip": false,
|
| 752 |
+
"single_word": false,
|
| 753 |
+
"special": true
|
| 754 |
+
},
|
| 755 |
+
"128091": {
|
| 756 |
+
"content": "<|gigatoken_92|>",
|
| 757 |
+
"lstrip": false,
|
| 758 |
+
"normalized": false,
|
| 759 |
+
"rstrip": false,
|
| 760 |
+
"single_word": false,
|
| 761 |
+
"special": true
|
| 762 |
+
},
|
| 763 |
+
"128092": {
|
| 764 |
+
"content": "<|gigatoken_93|>",
|
| 765 |
+
"lstrip": false,
|
| 766 |
+
"normalized": false,
|
| 767 |
+
"rstrip": false,
|
| 768 |
+
"single_word": false,
|
| 769 |
+
"special": true
|
| 770 |
+
},
|
| 771 |
+
"128093": {
|
| 772 |
+
"content": "<|gigatoken_94|>",
|
| 773 |
+
"lstrip": false,
|
| 774 |
+
"normalized": false,
|
| 775 |
+
"rstrip": false,
|
| 776 |
+
"single_word": false,
|
| 777 |
+
"special": true
|
| 778 |
+
},
|
| 779 |
+
"128094": {
|
| 780 |
+
"content": "<|gigatoken_95|>",
|
| 781 |
+
"lstrip": false,
|
| 782 |
+
"normalized": false,
|
| 783 |
+
"rstrip": false,
|
| 784 |
+
"single_word": false,
|
| 785 |
+
"special": true
|
| 786 |
+
},
|
| 787 |
+
"128095": {
|
| 788 |
+
"content": "<|gigatoken_96|>",
|
| 789 |
+
"lstrip": false,
|
| 790 |
+
"normalized": false,
|
| 791 |
+
"rstrip": false,
|
| 792 |
+
"single_word": false,
|
| 793 |
+
"special": true
|
| 794 |
+
},
|
| 795 |
+
"128096": {
|
| 796 |
+
"content": "<|gigatoken_97|>",
|
| 797 |
+
"lstrip": false,
|
| 798 |
+
"normalized": false,
|
| 799 |
+
"rstrip": false,
|
| 800 |
+
"single_word": false,
|
| 801 |
+
"special": true
|
| 802 |
+
},
|
| 803 |
+
"128097": {
|
| 804 |
+
"content": "<|gigatoken_98|>",
|
| 805 |
+
"lstrip": false,
|
| 806 |
+
"normalized": false,
|
| 807 |
+
"rstrip": false,
|
| 808 |
+
"single_word": false,
|
| 809 |
+
"special": true
|
| 810 |
+
},
|
| 811 |
+
"128098": {
|
| 812 |
+
"content": "<|gigatoken_99|>",
|
| 813 |
+
"lstrip": false,
|
| 814 |
+
"normalized": false,
|
| 815 |
+
"rstrip": false,
|
| 816 |
+
"single_word": false,
|
| 817 |
+
"special": true
|
| 818 |
+
},
|
| 819 |
+
"128099": {
|
| 820 |
+
"content": "<|gigatoken_100|>",
|
| 821 |
+
"lstrip": false,
|
| 822 |
+
"normalized": false,
|
| 823 |
+
"rstrip": false,
|
| 824 |
+
"single_word": false,
|
| 825 |
+
"special": true
|
| 826 |
+
},
|
| 827 |
+
"128100": {
|
| 828 |
+
"content": "<|gigatoken_101|>",
|
| 829 |
+
"lstrip": false,
|
| 830 |
+
"normalized": false,
|
| 831 |
+
"rstrip": false,
|
| 832 |
+
"single_word": false,
|
| 833 |
+
"special": true
|
| 834 |
+
},
|
| 835 |
+
"128101": {
|
| 836 |
+
"content": "<|gigatoken_102|>",
|
| 837 |
+
"lstrip": false,
|
| 838 |
+
"normalized": false,
|
| 839 |
+
"rstrip": false,
|
| 840 |
+
"single_word": false,
|
| 841 |
+
"special": true
|
| 842 |
+
},
|
| 843 |
+
"128102": {
|
| 844 |
+
"content": "<|gigatoken_103|>",
|
| 845 |
+
"lstrip": false,
|
| 846 |
+
"normalized": false,
|
| 847 |
+
"rstrip": false,
|
| 848 |
+
"single_word": false,
|
| 849 |
+
"special": true
|
| 850 |
+
},
|
| 851 |
+
"128103": {
|
| 852 |
+
"content": "<|gigatoken_104|>",
|
| 853 |
+
"lstrip": false,
|
| 854 |
+
"normalized": false,
|
| 855 |
+
"rstrip": false,
|
| 856 |
+
"single_word": false,
|
| 857 |
+
"special": true
|
| 858 |
+
},
|
| 859 |
+
"128104": {
|
| 860 |
+
"content": "<|gigatoken_105|>",
|
| 861 |
+
"lstrip": false,
|
| 862 |
+
"normalized": false,
|
| 863 |
+
"rstrip": false,
|
| 864 |
+
"single_word": false,
|
| 865 |
+
"special": true
|
| 866 |
+
},
|
| 867 |
+
"128105": {
|
| 868 |
+
"content": "<|gigatoken_106|>",
|
| 869 |
+
"lstrip": false,
|
| 870 |
+
"normalized": false,
|
| 871 |
+
"rstrip": false,
|
| 872 |
+
"single_word": false,
|
| 873 |
+
"special": true
|
| 874 |
+
},
|
| 875 |
+
"128106": {
|
| 876 |
+
"content": "<|gigatoken_107|>",
|
| 877 |
+
"lstrip": false,
|
| 878 |
+
"normalized": false,
|
| 879 |
+
"rstrip": false,
|
| 880 |
+
"single_word": false,
|
| 881 |
+
"special": true
|
| 882 |
+
},
|
| 883 |
+
"128107": {
|
| 884 |
+
"content": "<|gigatoken_108|>",
|
| 885 |
+
"lstrip": false,
|
| 886 |
+
"normalized": false,
|
| 887 |
+
"rstrip": false,
|
| 888 |
+
"single_word": false,
|
| 889 |
+
"special": true
|
| 890 |
+
},
|
| 891 |
+
"128108": {
|
| 892 |
+
"content": "<|gigatoken_109|>",
|
| 893 |
+
"lstrip": false,
|
| 894 |
+
"normalized": false,
|
| 895 |
+
"rstrip": false,
|
| 896 |
+
"single_word": false,
|
| 897 |
+
"special": true
|
| 898 |
+
},
|
| 899 |
+
"128109": {
|
| 900 |
+
"content": "<|gigatoken_110|>",
|
| 901 |
+
"lstrip": false,
|
| 902 |
+
"normalized": false,
|
| 903 |
+
"rstrip": false,
|
| 904 |
+
"single_word": false,
|
| 905 |
+
"special": true
|
| 906 |
+
},
|
| 907 |
+
"128110": {
|
| 908 |
+
"content": "<|gigatoken_111|>",
|
| 909 |
+
"lstrip": false,
|
| 910 |
+
"normalized": false,
|
| 911 |
+
"rstrip": false,
|
| 912 |
+
"single_word": false,
|
| 913 |
+
"special": true
|
| 914 |
+
},
|
| 915 |
+
"128111": {
|
| 916 |
+
"content": "<|gigatoken_112|>",
|
| 917 |
+
"lstrip": false,
|
| 918 |
+
"normalized": false,
|
| 919 |
+
"rstrip": false,
|
| 920 |
+
"single_word": false,
|
| 921 |
+
"special": true
|
| 922 |
+
},
|
| 923 |
+
"128112": {
|
| 924 |
+
"content": "<|gigatoken_113|>",
|
| 925 |
+
"lstrip": false,
|
| 926 |
+
"normalized": false,
|
| 927 |
+
"rstrip": false,
|
| 928 |
+
"single_word": false,
|
| 929 |
+
"special": true
|
| 930 |
+
},
|
| 931 |
+
"128113": {
|
| 932 |
+
"content": "<|gigatoken_114|>",
|
| 933 |
+
"lstrip": false,
|
| 934 |
+
"normalized": false,
|
| 935 |
+
"rstrip": false,
|
| 936 |
+
"single_word": false,
|
| 937 |
+
"special": true
|
| 938 |
+
},
|
| 939 |
+
"128114": {
|
| 940 |
+
"content": "<|gigatoken_115|>",
|
| 941 |
+
"lstrip": false,
|
| 942 |
+
"normalized": false,
|
| 943 |
+
"rstrip": false,
|
| 944 |
+
"single_word": false,
|
| 945 |
+
"special": true
|
| 946 |
+
},
|
| 947 |
+
"128115": {
|
| 948 |
+
"content": "<|gigatoken_116|>",
|
| 949 |
+
"lstrip": false,
|
| 950 |
+
"normalized": false,
|
| 951 |
+
"rstrip": false,
|
| 952 |
+
"single_word": false,
|
| 953 |
+
"special": true
|
| 954 |
+
},
|
| 955 |
+
"128116": {
|
| 956 |
+
"content": "<|gigatoken_117|>",
|
| 957 |
+
"lstrip": false,
|
| 958 |
+
"normalized": false,
|
| 959 |
+
"rstrip": false,
|
| 960 |
+
"single_word": false,
|
| 961 |
+
"special": true
|
| 962 |
+
},
|
| 963 |
+
"128117": {
|
| 964 |
+
"content": "<|gigatoken_118|>",
|
| 965 |
+
"lstrip": false,
|
| 966 |
+
"normalized": false,
|
| 967 |
+
"rstrip": false,
|
| 968 |
+
"single_word": false,
|
| 969 |
+
"special": true
|
| 970 |
+
},
|
| 971 |
+
"128118": {
|
| 972 |
+
"content": "<|gigatoken_119|>",
|
| 973 |
+
"lstrip": false,
|
| 974 |
+
"normalized": false,
|
| 975 |
+
"rstrip": false,
|
| 976 |
+
"single_word": false,
|
| 977 |
+
"special": true
|
| 978 |
+
},
|
| 979 |
+
"128119": {
|
| 980 |
+
"content": "<|gigatoken_120|>",
|
| 981 |
+
"lstrip": false,
|
| 982 |
+
"normalized": false,
|
| 983 |
+
"rstrip": false,
|
| 984 |
+
"single_word": false,
|
| 985 |
+
"special": true
|
| 986 |
+
},
|
| 987 |
+
"128120": {
|
| 988 |
+
"content": "<|gigatoken_121|>",
|
| 989 |
+
"lstrip": false,
|
| 990 |
+
"normalized": false,
|
| 991 |
+
"rstrip": false,
|
| 992 |
+
"single_word": false,
|
| 993 |
+
"special": true
|
| 994 |
+
},
|
| 995 |
+
"128121": {
|
| 996 |
+
"content": "<|gigatoken_122|>",
|
| 997 |
+
"lstrip": false,
|
| 998 |
+
"normalized": false,
|
| 999 |
+
"rstrip": false,
|
| 1000 |
+
"single_word": false,
|
| 1001 |
+
"special": true
|
| 1002 |
+
},
|
| 1003 |
+
"128122": {
|
| 1004 |
+
"content": "<|gigatoken_123|>",
|
| 1005 |
+
"lstrip": false,
|
| 1006 |
+
"normalized": false,
|
| 1007 |
+
"rstrip": false,
|
| 1008 |
+
"single_word": false,
|
| 1009 |
+
"special": true
|
| 1010 |
+
},
|
| 1011 |
+
"128123": {
|
| 1012 |
+
"content": "<|gigatoken_124|>",
|
| 1013 |
+
"lstrip": false,
|
| 1014 |
+
"normalized": false,
|
| 1015 |
+
"rstrip": false,
|
| 1016 |
+
"single_word": false,
|
| 1017 |
+
"special": true
|
| 1018 |
+
},
|
| 1019 |
+
"128124": {
|
| 1020 |
+
"content": "<|gigatoken_125|>",
|
| 1021 |
+
"lstrip": false,
|
| 1022 |
+
"normalized": false,
|
| 1023 |
+
"rstrip": false,
|
| 1024 |
+
"single_word": false,
|
| 1025 |
+
"special": true
|
| 1026 |
+
},
|
| 1027 |
+
"128125": {
|
| 1028 |
+
"content": "<|gigatoken_126|>",
|
| 1029 |
+
"lstrip": false,
|
| 1030 |
+
"normalized": false,
|
| 1031 |
+
"rstrip": false,
|
| 1032 |
+
"single_word": false,
|
| 1033 |
+
"special": true
|
| 1034 |
+
},
|
| 1035 |
+
"128126": {
|
| 1036 |
+
"content": "<|gigatoken_127|>",
|
| 1037 |
+
"lstrip": false,
|
| 1038 |
+
"normalized": false,
|
| 1039 |
+
"rstrip": false,
|
| 1040 |
+
"single_word": false,
|
| 1041 |
+
"special": true
|
| 1042 |
+
},
|
| 1043 |
+
"128127": {
|
| 1044 |
+
"content": "<|gigatoken_128|>",
|
| 1045 |
+
"lstrip": false,
|
| 1046 |
+
"normalized": false,
|
| 1047 |
+
"rstrip": false,
|
| 1048 |
+
"single_word": false,
|
| 1049 |
+
"special": true
|
| 1050 |
+
},
|
| 1051 |
+
"128128": {
|
| 1052 |
+
"content": "<|gigatoken_129|>",
|
| 1053 |
+
"lstrip": false,
|
| 1054 |
+
"normalized": false,
|
| 1055 |
+
"rstrip": false,
|
| 1056 |
+
"single_word": false,
|
| 1057 |
+
"special": true
|
| 1058 |
+
},
|
| 1059 |
+
"128129": {
|
| 1060 |
+
"content": "<|gigatoken_130|>",
|
| 1061 |
+
"lstrip": false,
|
| 1062 |
+
"normalized": false,
|
| 1063 |
+
"rstrip": false,
|
| 1064 |
+
"single_word": false,
|
| 1065 |
+
"special": true
|
| 1066 |
+
},
|
| 1067 |
+
"128130": {
|
| 1068 |
+
"content": "<|gigatoken_131|>",
|
| 1069 |
+
"lstrip": false,
|
| 1070 |
+
"normalized": false,
|
| 1071 |
+
"rstrip": false,
|
| 1072 |
+
"single_word": false,
|
| 1073 |
+
"special": true
|
| 1074 |
+
},
|
| 1075 |
+
"128131": {
|
| 1076 |
+
"content": "<|gigatoken_132|>",
|
| 1077 |
+
"lstrip": false,
|
| 1078 |
+
"normalized": false,
|
| 1079 |
+
"rstrip": false,
|
| 1080 |
+
"single_word": false,
|
| 1081 |
+
"special": true
|
| 1082 |
+
},
|
| 1083 |
+
"128132": {
|
| 1084 |
+
"content": "<|gigatoken_133|>",
|
| 1085 |
+
"lstrip": false,
|
| 1086 |
+
"normalized": false,
|
| 1087 |
+
"rstrip": false,
|
| 1088 |
+
"single_word": false,
|
| 1089 |
+
"special": true
|
| 1090 |
+
},
|
| 1091 |
+
"128133": {
|
| 1092 |
+
"content": "<|gigatoken_134|>",
|
| 1093 |
+
"lstrip": false,
|
| 1094 |
+
"normalized": false,
|
| 1095 |
+
"rstrip": false,
|
| 1096 |
+
"single_word": false,
|
| 1097 |
+
"special": true
|
| 1098 |
+
},
|
| 1099 |
+
"128134": {
|
| 1100 |
+
"content": "<|gigatoken_135|>",
|
| 1101 |
+
"lstrip": false,
|
| 1102 |
+
"normalized": false,
|
| 1103 |
+
"rstrip": false,
|
| 1104 |
+
"single_word": false,
|
| 1105 |
+
"special": true
|
| 1106 |
+
},
|
| 1107 |
+
"128135": {
|
| 1108 |
+
"content": "<|gigatoken_136|>",
|
| 1109 |
+
"lstrip": false,
|
| 1110 |
+
"normalized": false,
|
| 1111 |
+
"rstrip": false,
|
| 1112 |
+
"single_word": false,
|
| 1113 |
+
"special": true
|
| 1114 |
+
},
|
| 1115 |
+
"128136": {
|
| 1116 |
+
"content": "<|gigatoken_137|>",
|
| 1117 |
+
"lstrip": false,
|
| 1118 |
+
"normalized": false,
|
| 1119 |
+
"rstrip": false,
|
| 1120 |
+
"single_word": false,
|
| 1121 |
+
"special": true
|
| 1122 |
+
},
|
| 1123 |
+
"128137": {
|
| 1124 |
+
"content": "<|gigatoken_138|>",
|
| 1125 |
+
"lstrip": false,
|
| 1126 |
+
"normalized": false,
|
| 1127 |
+
"rstrip": false,
|
| 1128 |
+
"single_word": false,
|
| 1129 |
+
"special": true
|
| 1130 |
+
},
|
| 1131 |
+
"128138": {
|
| 1132 |
+
"content": "<|gigatoken_139|>",
|
| 1133 |
+
"lstrip": false,
|
| 1134 |
+
"normalized": false,
|
| 1135 |
+
"rstrip": false,
|
| 1136 |
+
"single_word": false,
|
| 1137 |
+
"special": true
|
| 1138 |
+
},
|
| 1139 |
+
"128139": {
|
| 1140 |
+
"content": "<|gigatoken_140|>",
|
| 1141 |
+
"lstrip": false,
|
| 1142 |
+
"normalized": false,
|
| 1143 |
+
"rstrip": false,
|
| 1144 |
+
"single_word": false,
|
| 1145 |
+
"special": true
|
| 1146 |
+
},
|
| 1147 |
+
"128140": {
|
| 1148 |
+
"content": "<|gigatoken_141|>",
|
| 1149 |
+
"lstrip": false,
|
| 1150 |
+
"normalized": false,
|
| 1151 |
+
"rstrip": false,
|
| 1152 |
+
"single_word": false,
|
| 1153 |
+
"special": true
|
| 1154 |
+
},
|
| 1155 |
+
"128141": {
|
| 1156 |
+
"content": "<|gigatoken_142|>",
|
| 1157 |
+
"lstrip": false,
|
| 1158 |
+
"normalized": false,
|
| 1159 |
+
"rstrip": false,
|
| 1160 |
+
"single_word": false,
|
| 1161 |
+
"special": true
|
| 1162 |
+
},
|
| 1163 |
+
"128142": {
|
| 1164 |
+
"content": "<|gigatoken_143|>",
|
| 1165 |
+
"lstrip": false,
|
| 1166 |
+
"normalized": false,
|
| 1167 |
+
"rstrip": false,
|
| 1168 |
+
"single_word": false,
|
| 1169 |
+
"special": true
|
| 1170 |
+
},
|
| 1171 |
+
"128143": {
|
| 1172 |
+
"content": "<|gigatoken_144|>",
|
| 1173 |
+
"lstrip": false,
|
| 1174 |
+
"normalized": false,
|
| 1175 |
+
"rstrip": false,
|
| 1176 |
+
"single_word": false,
|
| 1177 |
+
"special": true
|
| 1178 |
+
},
|
| 1179 |
+
"128144": {
|
| 1180 |
+
"content": "<|gigatoken_145|>",
|
| 1181 |
+
"lstrip": false,
|
| 1182 |
+
"normalized": false,
|
| 1183 |
+
"rstrip": false,
|
| 1184 |
+
"single_word": false,
|
| 1185 |
+
"special": true
|
| 1186 |
+
},
|
| 1187 |
+
"128145": {
|
| 1188 |
+
"content": "<|gigatoken_146|>",
|
| 1189 |
+
"lstrip": false,
|
| 1190 |
+
"normalized": false,
|
| 1191 |
+
"rstrip": false,
|
| 1192 |
+
"single_word": false,
|
| 1193 |
+
"special": true
|
| 1194 |
+
},
|
| 1195 |
+
"128146": {
|
| 1196 |
+
"content": "<|gigatoken_147|>",
|
| 1197 |
+
"lstrip": false,
|
| 1198 |
+
"normalized": false,
|
| 1199 |
+
"rstrip": false,
|
| 1200 |
+
"single_word": false,
|
| 1201 |
+
"special": true
|
| 1202 |
+
},
|
| 1203 |
+
"128147": {
|
| 1204 |
+
"content": "<|gigatoken_148|>",
|
| 1205 |
+
"lstrip": false,
|
| 1206 |
+
"normalized": false,
|
| 1207 |
+
"rstrip": false,
|
| 1208 |
+
"single_word": false,
|
| 1209 |
+
"special": true
|
| 1210 |
+
},
|
| 1211 |
+
"128148": {
|
| 1212 |
+
"content": "<|gigatoken_149|>",
|
| 1213 |
+
"lstrip": false,
|
| 1214 |
+
"normalized": false,
|
| 1215 |
+
"rstrip": false,
|
| 1216 |
+
"single_word": false,
|
| 1217 |
+
"special": true
|
| 1218 |
+
},
|
| 1219 |
+
"128149": {
|
| 1220 |
+
"content": "<|gigatoken_150|>",
|
| 1221 |
+
"lstrip": false,
|
| 1222 |
+
"normalized": false,
|
| 1223 |
+
"rstrip": false,
|
| 1224 |
+
"single_word": false,
|
| 1225 |
+
"special": true
|
| 1226 |
+
},
|
| 1227 |
+
"128150": {
|
| 1228 |
+
"content": "<|gigatoken_151|>",
|
| 1229 |
+
"lstrip": false,
|
| 1230 |
+
"normalized": false,
|
| 1231 |
+
"rstrip": false,
|
| 1232 |
+
"single_word": false,
|
| 1233 |
+
"special": true
|
| 1234 |
+
},
|
| 1235 |
+
"128151": {
|
| 1236 |
+
"content": "<|gigatoken_152|>",
|
| 1237 |
+
"lstrip": false,
|
| 1238 |
+
"normalized": false,
|
| 1239 |
+
"rstrip": false,
|
| 1240 |
+
"single_word": false,
|
| 1241 |
+
"special": true
|
| 1242 |
+
},
|
| 1243 |
+
"128152": {
|
| 1244 |
+
"content": "<|gigatoken_153|>",
|
| 1245 |
+
"lstrip": false,
|
| 1246 |
+
"normalized": false,
|
| 1247 |
+
"rstrip": false,
|
| 1248 |
+
"single_word": false,
|
| 1249 |
+
"special": true
|
| 1250 |
+
},
|
| 1251 |
+
"128153": {
|
| 1252 |
+
"content": "<|gigatoken_154|>",
|
| 1253 |
+
"lstrip": false,
|
| 1254 |
+
"normalized": false,
|
| 1255 |
+
"rstrip": false,
|
| 1256 |
+
"single_word": false,
|
| 1257 |
+
"special": true
|
| 1258 |
+
},
|
| 1259 |
+
"128154": {
|
| 1260 |
+
"content": "<|gigatoken_155|>",
|
| 1261 |
+
"lstrip": false,
|
| 1262 |
+
"normalized": false,
|
| 1263 |
+
"rstrip": false,
|
| 1264 |
+
"single_word": false,
|
| 1265 |
+
"special": true
|
| 1266 |
+
},
|
| 1267 |
+
"128155": {
|
| 1268 |
+
"content": "<|gigatoken_156|>",
|
| 1269 |
+
"lstrip": false,
|
| 1270 |
+
"normalized": false,
|
| 1271 |
+
"rstrip": false,
|
| 1272 |
+
"single_word": false,
|
| 1273 |
+
"special": true
|
| 1274 |
+
},
|
| 1275 |
+
"128156": {
|
| 1276 |
+
"content": "<|gigatoken_157|>",
|
| 1277 |
+
"lstrip": false,
|
| 1278 |
+
"normalized": false,
|
| 1279 |
+
"rstrip": false,
|
| 1280 |
+
"single_word": false,
|
| 1281 |
+
"special": true
|
| 1282 |
+
},
|
| 1283 |
+
"128157": {
|
| 1284 |
+
"content": "<|gigatoken_158|>",
|
| 1285 |
+
"lstrip": false,
|
| 1286 |
+
"normalized": false,
|
| 1287 |
+
"rstrip": false,
|
| 1288 |
+
"single_word": false,
|
| 1289 |
+
"special": true
|
| 1290 |
+
},
|
| 1291 |
+
"128158": {
|
| 1292 |
+
"content": "<|gigatoken_159|>",
|
| 1293 |
+
"lstrip": false,
|
| 1294 |
+
"normalized": false,
|
| 1295 |
+
"rstrip": false,
|
| 1296 |
+
"single_word": false,
|
| 1297 |
+
"special": true
|
| 1298 |
+
},
|
| 1299 |
+
"128159": {
|
| 1300 |
+
"content": "<|gigatoken_160|>",
|
| 1301 |
+
"lstrip": false,
|
| 1302 |
+
"normalized": false,
|
| 1303 |
+
"rstrip": false,
|
| 1304 |
+
"single_word": false,
|
| 1305 |
+
"special": true
|
| 1306 |
+
},
|
| 1307 |
+
"128160": {
|
| 1308 |
+
"content": "<|gigatoken_161|>",
|
| 1309 |
+
"lstrip": false,
|
| 1310 |
+
"normalized": false,
|
| 1311 |
+
"rstrip": false,
|
| 1312 |
+
"single_word": false,
|
| 1313 |
+
"special": true
|
| 1314 |
+
},
|
| 1315 |
+
"128161": {
|
| 1316 |
+
"content": "<|gigatoken_162|>",
|
| 1317 |
+
"lstrip": false,
|
| 1318 |
+
"normalized": false,
|
| 1319 |
+
"rstrip": false,
|
| 1320 |
+
"single_word": false,
|
| 1321 |
+
"special": true
|
| 1322 |
+
},
|
| 1323 |
+
"128162": {
|
| 1324 |
+
"content": "<|gigatoken_163|>",
|
| 1325 |
+
"lstrip": false,
|
| 1326 |
+
"normalized": false,
|
| 1327 |
+
"rstrip": false,
|
| 1328 |
+
"single_word": false,
|
| 1329 |
+
"special": true
|
| 1330 |
+
},
|
| 1331 |
+
"128163": {
|
| 1332 |
+
"content": "<|gigatoken_164|>",
|
| 1333 |
+
"lstrip": false,
|
| 1334 |
+
"normalized": false,
|
| 1335 |
+
"rstrip": false,
|
| 1336 |
+
"single_word": false,
|
| 1337 |
+
"special": true
|
| 1338 |
+
},
|
| 1339 |
+
"128164": {
|
| 1340 |
+
"content": "<|gigatoken_165|>",
|
| 1341 |
+
"lstrip": false,
|
| 1342 |
+
"normalized": false,
|
| 1343 |
+
"rstrip": false,
|
| 1344 |
+
"single_word": false,
|
| 1345 |
+
"special": true
|
| 1346 |
+
},
|
| 1347 |
+
"128165": {
|
| 1348 |
+
"content": "<|gigatoken_166|>",
|
| 1349 |
+
"lstrip": false,
|
| 1350 |
+
"normalized": false,
|
| 1351 |
+
"rstrip": false,
|
| 1352 |
+
"single_word": false,
|
| 1353 |
+
"special": true
|
| 1354 |
+
},
|
| 1355 |
+
"128166": {
|
| 1356 |
+
"content": "<|gigatoken_167|>",
|
| 1357 |
+
"lstrip": false,
|
| 1358 |
+
"normalized": false,
|
| 1359 |
+
"rstrip": false,
|
| 1360 |
+
"single_word": false,
|
| 1361 |
+
"special": true
|
| 1362 |
+
},
|
| 1363 |
+
"128167": {
|
| 1364 |
+
"content": "<|gigatoken_168|>",
|
| 1365 |
+
"lstrip": false,
|
| 1366 |
+
"normalized": false,
|
| 1367 |
+
"rstrip": false,
|
| 1368 |
+
"single_word": false,
|
| 1369 |
+
"special": true
|
| 1370 |
+
},
|
| 1371 |
+
"128168": {
|
| 1372 |
+
"content": "<|gigatoken_169|>",
|
| 1373 |
+
"lstrip": false,
|
| 1374 |
+
"normalized": false,
|
| 1375 |
+
"rstrip": false,
|
| 1376 |
+
"single_word": false,
|
| 1377 |
+
"special": true
|
| 1378 |
+
},
|
| 1379 |
+
"128169": {
|
| 1380 |
+
"content": "<|gigatoken_170|>",
|
| 1381 |
+
"lstrip": false,
|
| 1382 |
+
"normalized": false,
|
| 1383 |
+
"rstrip": false,
|
| 1384 |
+
"single_word": false,
|
| 1385 |
+
"special": true
|
| 1386 |
+
},
|
| 1387 |
+
"128170": {
|
| 1388 |
+
"content": "<|gigatoken_171|>",
|
| 1389 |
+
"lstrip": false,
|
| 1390 |
+
"normalized": false,
|
| 1391 |
+
"rstrip": false,
|
| 1392 |
+
"single_word": false,
|
| 1393 |
+
"special": true
|
| 1394 |
+
},
|
| 1395 |
+
"128171": {
|
| 1396 |
+
"content": "<|gigatoken_172|>",
|
| 1397 |
+
"lstrip": false,
|
| 1398 |
+
"normalized": false,
|
| 1399 |
+
"rstrip": false,
|
| 1400 |
+
"single_word": false,
|
| 1401 |
+
"special": true
|
| 1402 |
+
},
|
| 1403 |
+
"128172": {
|
| 1404 |
+
"content": "<|gigatoken_173|>",
|
| 1405 |
+
"lstrip": false,
|
| 1406 |
+
"normalized": false,
|
| 1407 |
+
"rstrip": false,
|
| 1408 |
+
"single_word": false,
|
| 1409 |
+
"special": true
|
| 1410 |
+
},
|
| 1411 |
+
"128173": {
|
| 1412 |
+
"content": "<|gigatoken_174|>",
|
| 1413 |
+
"lstrip": false,
|
| 1414 |
+
"normalized": false,
|
| 1415 |
+
"rstrip": false,
|
| 1416 |
+
"single_word": false,
|
| 1417 |
+
"special": true
|
| 1418 |
+
},
|
| 1419 |
+
"128174": {
|
| 1420 |
+
"content": "<|gigatoken_175|>",
|
| 1421 |
+
"lstrip": false,
|
| 1422 |
+
"normalized": false,
|
| 1423 |
+
"rstrip": false,
|
| 1424 |
+
"single_word": false,
|
| 1425 |
+
"special": true
|
| 1426 |
+
},
|
| 1427 |
+
"128175": {
|
| 1428 |
+
"content": "<|gigatoken_176|>",
|
| 1429 |
+
"lstrip": false,
|
| 1430 |
+
"normalized": false,
|
| 1431 |
+
"rstrip": false,
|
| 1432 |
+
"single_word": false,
|
| 1433 |
+
"special": true
|
| 1434 |
+
},
|
| 1435 |
+
"128176": {
|
| 1436 |
+
"content": "<|gigatoken_177|>",
|
| 1437 |
+
"lstrip": false,
|
| 1438 |
+
"normalized": false,
|
| 1439 |
+
"rstrip": false,
|
| 1440 |
+
"single_word": false,
|
| 1441 |
+
"special": true
|
| 1442 |
+
},
|
| 1443 |
+
"128177": {
|
| 1444 |
+
"content": "<|gigatoken_178|>",
|
| 1445 |
+
"lstrip": false,
|
| 1446 |
+
"normalized": false,
|
| 1447 |
+
"rstrip": false,
|
| 1448 |
+
"single_word": false,
|
| 1449 |
+
"special": true
|
| 1450 |
+
},
|
| 1451 |
+
"128178": {
|
| 1452 |
+
"content": "<|gigatoken_179|>",
|
| 1453 |
+
"lstrip": false,
|
| 1454 |
+
"normalized": false,
|
| 1455 |
+
"rstrip": false,
|
| 1456 |
+
"single_word": false,
|
| 1457 |
+
"special": true
|
| 1458 |
+
},
|
| 1459 |
+
"128179": {
|
| 1460 |
+
"content": "<|gigatoken_180|>",
|
| 1461 |
+
"lstrip": false,
|
| 1462 |
+
"normalized": false,
|
| 1463 |
+
"rstrip": false,
|
| 1464 |
+
"single_word": false,
|
| 1465 |
+
"special": true
|
| 1466 |
+
},
|
| 1467 |
+
"128180": {
|
| 1468 |
+
"content": "<|gigatoken_181|>",
|
| 1469 |
+
"lstrip": false,
|
| 1470 |
+
"normalized": false,
|
| 1471 |
+
"rstrip": false,
|
| 1472 |
+
"single_word": false,
|
| 1473 |
+
"special": true
|
| 1474 |
+
},
|
| 1475 |
+
"128181": {
|
| 1476 |
+
"content": "<|gigatoken_182|>",
|
| 1477 |
+
"lstrip": false,
|
| 1478 |
+
"normalized": false,
|
| 1479 |
+
"rstrip": false,
|
| 1480 |
+
"single_word": false,
|
| 1481 |
+
"special": true
|
| 1482 |
+
},
|
| 1483 |
+
"128182": {
|
| 1484 |
+
"content": "<|gigatoken_183|>",
|
| 1485 |
+
"lstrip": false,
|
| 1486 |
+
"normalized": false,
|
| 1487 |
+
"rstrip": false,
|
| 1488 |
+
"single_word": false,
|
| 1489 |
+
"special": true
|
| 1490 |
+
},
|
| 1491 |
+
"128183": {
|
| 1492 |
+
"content": "<|gigatoken_184|>",
|
| 1493 |
+
"lstrip": false,
|
| 1494 |
+
"normalized": false,
|
| 1495 |
+
"rstrip": false,
|
| 1496 |
+
"single_word": false,
|
| 1497 |
+
"special": true
|
| 1498 |
+
},
|
| 1499 |
+
"128184": {
|
| 1500 |
+
"content": "<|gigatoken_185|>",
|
| 1501 |
+
"lstrip": false,
|
| 1502 |
+
"normalized": false,
|
| 1503 |
+
"rstrip": false,
|
| 1504 |
+
"single_word": false,
|
| 1505 |
+
"special": true
|
| 1506 |
+
},
|
| 1507 |
+
"128185": {
|
| 1508 |
+
"content": "<|gigatoken_186|>",
|
| 1509 |
+
"lstrip": false,
|
| 1510 |
+
"normalized": false,
|
| 1511 |
+
"rstrip": false,
|
| 1512 |
+
"single_word": false,
|
| 1513 |
+
"special": true
|
| 1514 |
+
},
|
| 1515 |
+
"128186": {
|
| 1516 |
+
"content": "<|gigatoken_187|>",
|
| 1517 |
+
"lstrip": false,
|
| 1518 |
+
"normalized": false,
|
| 1519 |
+
"rstrip": false,
|
| 1520 |
+
"single_word": false,
|
| 1521 |
+
"special": true
|
| 1522 |
+
},
|
| 1523 |
+
"128187": {
|
| 1524 |
+
"content": "<|gigatoken_188|>",
|
| 1525 |
+
"lstrip": false,
|
| 1526 |
+
"normalized": false,
|
| 1527 |
+
"rstrip": false,
|
| 1528 |
+
"single_word": false,
|
| 1529 |
+
"special": true
|
| 1530 |
+
},
|
| 1531 |
+
"128188": {
|
| 1532 |
+
"content": "<|gigatoken_189|>",
|
| 1533 |
+
"lstrip": false,
|
| 1534 |
+
"normalized": false,
|
| 1535 |
+
"rstrip": false,
|
| 1536 |
+
"single_word": false,
|
| 1537 |
+
"special": true
|
| 1538 |
+
},
|
| 1539 |
+
"128189": {
|
| 1540 |
+
"content": "<|gigatoken_190|>",
|
| 1541 |
+
"lstrip": false,
|
| 1542 |
+
"normalized": false,
|
| 1543 |
+
"rstrip": false,
|
| 1544 |
+
"single_word": false,
|
| 1545 |
+
"special": true
|
| 1546 |
+
},
|
| 1547 |
+
"128190": {
|
| 1548 |
+
"content": "<|gigatoken_191|>",
|
| 1549 |
+
"lstrip": false,
|
| 1550 |
+
"normalized": false,
|
| 1551 |
+
"rstrip": false,
|
| 1552 |
+
"single_word": false,
|
| 1553 |
+
"special": true
|
| 1554 |
+
},
|
| 1555 |
+
"128191": {
|
| 1556 |
+
"content": "<|gigatoken_192|>",
|
| 1557 |
+
"lstrip": false,
|
| 1558 |
+
"normalized": false,
|
| 1559 |
+
"rstrip": false,
|
| 1560 |
+
"single_word": false,
|
| 1561 |
+
"special": true
|
| 1562 |
+
},
|
| 1563 |
+
"128192": {
|
| 1564 |
+
"content": "<|gigatoken_193|>",
|
| 1565 |
+
"lstrip": false,
|
| 1566 |
+
"normalized": false,
|
| 1567 |
+
"rstrip": false,
|
| 1568 |
+
"single_word": false,
|
| 1569 |
+
"special": true
|
| 1570 |
+
},
|
| 1571 |
+
"128193": {
|
| 1572 |
+
"content": "<|gigatoken_194|>",
|
| 1573 |
+
"lstrip": false,
|
| 1574 |
+
"normalized": false,
|
| 1575 |
+
"rstrip": false,
|
| 1576 |
+
"single_word": false,
|
| 1577 |
+
"special": true
|
| 1578 |
+
},
|
| 1579 |
+
"128194": {
|
| 1580 |
+
"content": "<|gigatoken_195|>",
|
| 1581 |
+
"lstrip": false,
|
| 1582 |
+
"normalized": false,
|
| 1583 |
+
"rstrip": false,
|
| 1584 |
+
"single_word": false,
|
| 1585 |
+
"special": true
|
| 1586 |
+
},
|
| 1587 |
+
"128195": {
|
| 1588 |
+
"content": "<|gigatoken_196|>",
|
| 1589 |
+
"lstrip": false,
|
| 1590 |
+
"normalized": false,
|
| 1591 |
+
"rstrip": false,
|
| 1592 |
+
"single_word": false,
|
| 1593 |
+
"special": true
|
| 1594 |
+
},
|
| 1595 |
+
"128196": {
|
| 1596 |
+
"content": "<|gigatoken_197|>",
|
| 1597 |
+
"lstrip": false,
|
| 1598 |
+
"normalized": false,
|
| 1599 |
+
"rstrip": false,
|
| 1600 |
+
"single_word": false,
|
| 1601 |
+
"special": true
|
| 1602 |
+
},
|
| 1603 |
+
"128197": {
|
| 1604 |
+
"content": "<|gigatoken_198|>",
|
| 1605 |
+
"lstrip": false,
|
| 1606 |
+
"normalized": false,
|
| 1607 |
+
"rstrip": false,
|
| 1608 |
+
"single_word": false,
|
| 1609 |
+
"special": true
|
| 1610 |
+
},
|
| 1611 |
+
"128198": {
|
| 1612 |
+
"content": "<|gigatoken_199|>",
|
| 1613 |
+
"lstrip": false,
|
| 1614 |
+
"normalized": false,
|
| 1615 |
+
"rstrip": false,
|
| 1616 |
+
"single_word": false,
|
| 1617 |
+
"special": true
|
| 1618 |
+
},
|
| 1619 |
+
"128199": {
|
| 1620 |
+
"content": "<|gigatoken_200|>",
|
| 1621 |
+
"lstrip": false,
|
| 1622 |
+
"normalized": false,
|
| 1623 |
+
"rstrip": false,
|
| 1624 |
+
"single_word": false,
|
| 1625 |
+
"special": true
|
| 1626 |
+
},
|
| 1627 |
+
"128200": {
|
| 1628 |
+
"content": "<|gigatoken_201|>",
|
| 1629 |
+
"lstrip": false,
|
| 1630 |
+
"normalized": false,
|
| 1631 |
+
"rstrip": false,
|
| 1632 |
+
"single_word": false,
|
| 1633 |
+
"special": true
|
| 1634 |
+
},
|
| 1635 |
+
"128201": {
|
| 1636 |
+
"content": "<|gigatoken_202|>",
|
| 1637 |
+
"lstrip": false,
|
| 1638 |
+
"normalized": false,
|
| 1639 |
+
"rstrip": false,
|
| 1640 |
+
"single_word": false,
|
| 1641 |
+
"special": true
|
| 1642 |
+
},
|
| 1643 |
+
"128202": {
|
| 1644 |
+
"content": "<|gigatoken_203|>",
|
| 1645 |
+
"lstrip": false,
|
| 1646 |
+
"normalized": false,
|
| 1647 |
+
"rstrip": false,
|
| 1648 |
+
"single_word": false,
|
| 1649 |
+
"special": true
|
| 1650 |
+
},
|
| 1651 |
+
"128203": {
|
| 1652 |
+
"content": "<|gigatoken_204|>",
|
| 1653 |
+
"lstrip": false,
|
| 1654 |
+
"normalized": false,
|
| 1655 |
+
"rstrip": false,
|
| 1656 |
+
"single_word": false,
|
| 1657 |
+
"special": true
|
| 1658 |
+
},
|
| 1659 |
+
"128204": {
|
| 1660 |
+
"content": "<|gigatoken_205|>",
|
| 1661 |
+
"lstrip": false,
|
| 1662 |
+
"normalized": false,
|
| 1663 |
+
"rstrip": false,
|
| 1664 |
+
"single_word": false,
|
| 1665 |
+
"special": true
|
| 1666 |
+
},
|
| 1667 |
+
"128205": {
|
| 1668 |
+
"content": "<|gigatoken_206|>",
|
| 1669 |
+
"lstrip": false,
|
| 1670 |
+
"normalized": false,
|
| 1671 |
+
"rstrip": false,
|
| 1672 |
+
"single_word": false,
|
| 1673 |
+
"special": true
|
| 1674 |
+
},
|
| 1675 |
+
"128206": {
|
| 1676 |
+
"content": "<|gigatoken_207|>",
|
| 1677 |
+
"lstrip": false,
|
| 1678 |
+
"normalized": false,
|
| 1679 |
+
"rstrip": false,
|
| 1680 |
+
"single_word": false,
|
| 1681 |
+
"special": true
|
| 1682 |
+
},
|
| 1683 |
+
"128207": {
|
| 1684 |
+
"content": "<|gigatoken_208|>",
|
| 1685 |
+
"lstrip": false,
|
| 1686 |
+
"normalized": false,
|
| 1687 |
+
"rstrip": false,
|
| 1688 |
+
"single_word": false,
|
| 1689 |
+
"special": true
|
| 1690 |
+
},
|
| 1691 |
+
"128208": {
|
| 1692 |
+
"content": "<|gigatoken_209|>",
|
| 1693 |
+
"lstrip": false,
|
| 1694 |
+
"normalized": false,
|
| 1695 |
+
"rstrip": false,
|
| 1696 |
+
"single_word": false,
|
| 1697 |
+
"special": true
|
| 1698 |
+
},
|
| 1699 |
+
"128209": {
|
| 1700 |
+
"content": "<|gigatoken_210|>",
|
| 1701 |
+
"lstrip": false,
|
| 1702 |
+
"normalized": false,
|
| 1703 |
+
"rstrip": false,
|
| 1704 |
+
"single_word": false,
|
| 1705 |
+
"special": true
|
| 1706 |
+
},
|
| 1707 |
+
"128210": {
|
| 1708 |
+
"content": "<|gigatoken_211|>",
|
| 1709 |
+
"lstrip": false,
|
| 1710 |
+
"normalized": false,
|
| 1711 |
+
"rstrip": false,
|
| 1712 |
+
"single_word": false,
|
| 1713 |
+
"special": true
|
| 1714 |
+
},
|
| 1715 |
+
"128211": {
|
| 1716 |
+
"content": "<|gigatoken_212|>",
|
| 1717 |
+
"lstrip": false,
|
| 1718 |
+
"normalized": false,
|
| 1719 |
+
"rstrip": false,
|
| 1720 |
+
"single_word": false,
|
| 1721 |
+
"special": true
|
| 1722 |
+
},
|
| 1723 |
+
"128212": {
|
| 1724 |
+
"content": "<|gigatoken_213|>",
|
| 1725 |
+
"lstrip": false,
|
| 1726 |
+
"normalized": false,
|
| 1727 |
+
"rstrip": false,
|
| 1728 |
+
"single_word": false,
|
| 1729 |
+
"special": true
|
| 1730 |
+
},
|
| 1731 |
+
"128213": {
|
| 1732 |
+
"content": "<|gigatoken_214|>",
|
| 1733 |
+
"lstrip": false,
|
| 1734 |
+
"normalized": false,
|
| 1735 |
+
"rstrip": false,
|
| 1736 |
+
"single_word": false,
|
| 1737 |
+
"special": true
|
| 1738 |
+
},
|
| 1739 |
+
"128214": {
|
| 1740 |
+
"content": "<|gigatoken_215|>",
|
| 1741 |
+
"lstrip": false,
|
| 1742 |
+
"normalized": false,
|
| 1743 |
+
"rstrip": false,
|
| 1744 |
+
"single_word": false,
|
| 1745 |
+
"special": true
|
| 1746 |
+
},
|
| 1747 |
+
"128215": {
|
| 1748 |
+
"content": "<|gigatoken_216|>",
|
| 1749 |
+
"lstrip": false,
|
| 1750 |
+
"normalized": false,
|
| 1751 |
+
"rstrip": false,
|
| 1752 |
+
"single_word": false,
|
| 1753 |
+
"special": true
|
| 1754 |
+
},
|
| 1755 |
+
"128216": {
|
| 1756 |
+
"content": "<|gigatoken_217|>",
|
| 1757 |
+
"lstrip": false,
|
| 1758 |
+
"normalized": false,
|
| 1759 |
+
"rstrip": false,
|
| 1760 |
+
"single_word": false,
|
| 1761 |
+
"special": true
|
| 1762 |
+
},
|
| 1763 |
+
"128217": {
|
| 1764 |
+
"content": "<|gigatoken_218|>",
|
| 1765 |
+
"lstrip": false,
|
| 1766 |
+
"normalized": false,
|
| 1767 |
+
"rstrip": false,
|
| 1768 |
+
"single_word": false,
|
| 1769 |
+
"special": true
|
| 1770 |
+
},
|
| 1771 |
+
"128218": {
|
| 1772 |
+
"content": "<|gigatoken_219|>",
|
| 1773 |
+
"lstrip": false,
|
| 1774 |
+
"normalized": false,
|
| 1775 |
+
"rstrip": false,
|
| 1776 |
+
"single_word": false,
|
| 1777 |
+
"special": true
|
| 1778 |
+
},
|
| 1779 |
+
"128219": {
|
| 1780 |
+
"content": "<|gigatoken_220|>",
|
| 1781 |
+
"lstrip": false,
|
| 1782 |
+
"normalized": false,
|
| 1783 |
+
"rstrip": false,
|
| 1784 |
+
"single_word": false,
|
| 1785 |
+
"special": true
|
| 1786 |
+
},
|
| 1787 |
+
"128220": {
|
| 1788 |
+
"content": "<|gigatoken_221|>",
|
| 1789 |
+
"lstrip": false,
|
| 1790 |
+
"normalized": false,
|
| 1791 |
+
"rstrip": false,
|
| 1792 |
+
"single_word": false,
|
| 1793 |
+
"special": true
|
| 1794 |
+
},
|
| 1795 |
+
"128221": {
|
| 1796 |
+
"content": "<|gigatoken_222|>",
|
| 1797 |
+
"lstrip": false,
|
| 1798 |
+
"normalized": false,
|
| 1799 |
+
"rstrip": false,
|
| 1800 |
+
"single_word": false,
|
| 1801 |
+
"special": true
|
| 1802 |
+
},
|
| 1803 |
+
"128222": {
|
| 1804 |
+
"content": "<|gigatoken_223|>",
|
| 1805 |
+
"lstrip": false,
|
| 1806 |
+
"normalized": false,
|
| 1807 |
+
"rstrip": false,
|
| 1808 |
+
"single_word": false,
|
| 1809 |
+
"special": true
|
| 1810 |
+
},
|
| 1811 |
+
"128223": {
|
| 1812 |
+
"content": "<|gigatoken_224|>",
|
| 1813 |
+
"lstrip": false,
|
| 1814 |
+
"normalized": false,
|
| 1815 |
+
"rstrip": false,
|
| 1816 |
+
"single_word": false,
|
| 1817 |
+
"special": true
|
| 1818 |
+
},
|
| 1819 |
+
"128224": {
|
| 1820 |
+
"content": "<|gigatoken_225|>",
|
| 1821 |
+
"lstrip": false,
|
| 1822 |
+
"normalized": false,
|
| 1823 |
+
"rstrip": false,
|
| 1824 |
+
"single_word": false,
|
| 1825 |
+
"special": true
|
| 1826 |
+
},
|
| 1827 |
+
"128225": {
|
| 1828 |
+
"content": "<|gigatoken_226|>",
|
| 1829 |
+
"lstrip": false,
|
| 1830 |
+
"normalized": false,
|
| 1831 |
+
"rstrip": false,
|
| 1832 |
+
"single_word": false,
|
| 1833 |
+
"special": true
|
| 1834 |
+
},
|
| 1835 |
+
"128226": {
|
| 1836 |
+
"content": "<|gigatoken_227|>",
|
| 1837 |
+
"lstrip": false,
|
| 1838 |
+
"normalized": false,
|
| 1839 |
+
"rstrip": false,
|
| 1840 |
+
"single_word": false,
|
| 1841 |
+
"special": true
|
| 1842 |
+
},
|
| 1843 |
+
"128227": {
|
| 1844 |
+
"content": "<|gigatoken_228|>",
|
| 1845 |
+
"lstrip": false,
|
| 1846 |
+
"normalized": false,
|
| 1847 |
+
"rstrip": false,
|
| 1848 |
+
"single_word": false,
|
| 1849 |
+
"special": true
|
| 1850 |
+
},
|
| 1851 |
+
"128228": {
|
| 1852 |
+
"content": "<|gigatoken_229|>",
|
| 1853 |
+
"lstrip": false,
|
| 1854 |
+
"normalized": false,
|
| 1855 |
+
"rstrip": false,
|
| 1856 |
+
"single_word": false,
|
| 1857 |
+
"special": true
|
| 1858 |
+
},
|
| 1859 |
+
"128229": {
|
| 1860 |
+
"content": "<|gigatoken_230|>",
|
| 1861 |
+
"lstrip": false,
|
| 1862 |
+
"normalized": false,
|
| 1863 |
+
"rstrip": false,
|
| 1864 |
+
"single_word": false,
|
| 1865 |
+
"special": true
|
| 1866 |
+
},
|
| 1867 |
+
"128230": {
|
| 1868 |
+
"content": "<|gigatoken_231|>",
|
| 1869 |
+
"lstrip": false,
|
| 1870 |
+
"normalized": false,
|
| 1871 |
+
"rstrip": false,
|
| 1872 |
+
"single_word": false,
|
| 1873 |
+
"special": true
|
| 1874 |
+
},
|
| 1875 |
+
"128231": {
|
| 1876 |
+
"content": "<|gigatoken_232|>",
|
| 1877 |
+
"lstrip": false,
|
| 1878 |
+
"normalized": false,
|
| 1879 |
+
"rstrip": false,
|
| 1880 |
+
"single_word": false,
|
| 1881 |
+
"special": true
|
| 1882 |
+
},
|
| 1883 |
+
"128232": {
|
| 1884 |
+
"content": "<|gigatoken_233|>",
|
| 1885 |
+
"lstrip": false,
|
| 1886 |
+
"normalized": false,
|
| 1887 |
+
"rstrip": false,
|
| 1888 |
+
"single_word": false,
|
| 1889 |
+
"special": true
|
| 1890 |
+
},
|
| 1891 |
+
"128233": {
|
| 1892 |
+
"content": "<|gigatoken_234|>",
|
| 1893 |
+
"lstrip": false,
|
| 1894 |
+
"normalized": false,
|
| 1895 |
+
"rstrip": false,
|
| 1896 |
+
"single_word": false,
|
| 1897 |
+
"special": true
|
| 1898 |
+
},
|
| 1899 |
+
"128234": {
|
| 1900 |
+
"content": "<|gigatoken_235|>",
|
| 1901 |
+
"lstrip": false,
|
| 1902 |
+
"normalized": false,
|
| 1903 |
+
"rstrip": false,
|
| 1904 |
+
"single_word": false,
|
| 1905 |
+
"special": true
|
| 1906 |
+
},
|
| 1907 |
+
"128235": {
|
| 1908 |
+
"content": "<|gigatoken_236|>",
|
| 1909 |
+
"lstrip": false,
|
| 1910 |
+
"normalized": false,
|
| 1911 |
+
"rstrip": false,
|
| 1912 |
+
"single_word": false,
|
| 1913 |
+
"special": true
|
| 1914 |
+
},
|
| 1915 |
+
"128236": {
|
| 1916 |
+
"content": "<|gigatoken_237|>",
|
| 1917 |
+
"lstrip": false,
|
| 1918 |
+
"normalized": false,
|
| 1919 |
+
"rstrip": false,
|
| 1920 |
+
"single_word": false,
|
| 1921 |
+
"special": true
|
| 1922 |
+
},
|
| 1923 |
+
"128237": {
|
| 1924 |
+
"content": "<|gigatoken_238|>",
|
| 1925 |
+
"lstrip": false,
|
| 1926 |
+
"normalized": false,
|
| 1927 |
+
"rstrip": false,
|
| 1928 |
+
"single_word": false,
|
| 1929 |
+
"special": true
|
| 1930 |
+
},
|
| 1931 |
+
"128238": {
|
| 1932 |
+
"content": "<|gigatoken_239|>",
|
| 1933 |
+
"lstrip": false,
|
| 1934 |
+
"normalized": false,
|
| 1935 |
+
"rstrip": false,
|
| 1936 |
+
"single_word": false,
|
| 1937 |
+
"special": true
|
| 1938 |
+
},
|
| 1939 |
+
"128239": {
|
| 1940 |
+
"content": "<|gigatoken_240|>",
|
| 1941 |
+
"lstrip": false,
|
| 1942 |
+
"normalized": false,
|
| 1943 |
+
"rstrip": false,
|
| 1944 |
+
"single_word": false,
|
| 1945 |
+
"special": true
|
| 1946 |
+
},
|
| 1947 |
+
"128240": {
|
| 1948 |
+
"content": "<|gigatoken_241|>",
|
| 1949 |
+
"lstrip": false,
|
| 1950 |
+
"normalized": false,
|
| 1951 |
+
"rstrip": false,
|
| 1952 |
+
"single_word": false,
|
| 1953 |
+
"special": true
|
| 1954 |
+
},
|
| 1955 |
+
"128241": {
|
| 1956 |
+
"content": "<|gigatoken_242|>",
|
| 1957 |
+
"lstrip": false,
|
| 1958 |
+
"normalized": false,
|
| 1959 |
+
"rstrip": false,
|
| 1960 |
+
"single_word": false,
|
| 1961 |
+
"special": true
|
| 1962 |
+
},
|
| 1963 |
+
"128242": {
|
| 1964 |
+
"content": "<|gigatoken_243|>",
|
| 1965 |
+
"lstrip": false,
|
| 1966 |
+
"normalized": false,
|
| 1967 |
+
"rstrip": false,
|
| 1968 |
+
"single_word": false,
|
| 1969 |
+
"special": true
|
| 1970 |
+
},
|
| 1971 |
+
"128243": {
|
| 1972 |
+
"content": "<|gigatoken_244|>",
|
| 1973 |
+
"lstrip": false,
|
| 1974 |
+
"normalized": false,
|
| 1975 |
+
"rstrip": false,
|
| 1976 |
+
"single_word": false,
|
| 1977 |
+
"special": true
|
| 1978 |
+
},
|
| 1979 |
+
"128244": {
|
| 1980 |
+
"content": "<|gigatoken_245|>",
|
| 1981 |
+
"lstrip": false,
|
| 1982 |
+
"normalized": false,
|
| 1983 |
+
"rstrip": false,
|
| 1984 |
+
"single_word": false,
|
| 1985 |
+
"special": true
|
| 1986 |
+
},
|
| 1987 |
+
"128245": {
|
| 1988 |
+
"content": "<|gigatoken_246|>",
|
| 1989 |
+
"lstrip": false,
|
| 1990 |
+
"normalized": false,
|
| 1991 |
+
"rstrip": false,
|
| 1992 |
+
"single_word": false,
|
| 1993 |
+
"special": true
|
| 1994 |
+
},
|
| 1995 |
+
"128246": {
|
| 1996 |
+
"content": "<|gigatoken_247|>",
|
| 1997 |
+
"lstrip": false,
|
| 1998 |
+
"normalized": false,
|
| 1999 |
+
"rstrip": false,
|
| 2000 |
+
"single_word": false,
|
| 2001 |
+
"special": true
|
| 2002 |
+
},
|
| 2003 |
+
"128247": {
|
| 2004 |
+
"content": "<|gigatoken_248|>",
|
| 2005 |
+
"lstrip": false,
|
| 2006 |
+
"normalized": false,
|
| 2007 |
+
"rstrip": false,
|
| 2008 |
+
"single_word": false,
|
| 2009 |
+
"special": true
|
| 2010 |
+
},
|
| 2011 |
+
"128248": {
|
| 2012 |
+
"content": "<|gigatoken_249|>",
|
| 2013 |
+
"lstrip": false,
|
| 2014 |
+
"normalized": false,
|
| 2015 |
+
"rstrip": false,
|
| 2016 |
+
"single_word": false,
|
| 2017 |
+
"special": true
|
| 2018 |
+
},
|
| 2019 |
+
"128249": {
|
| 2020 |
+
"content": "<|gigatoken_250|>",
|
| 2021 |
+
"lstrip": false,
|
| 2022 |
+
"normalized": false,
|
| 2023 |
+
"rstrip": false,
|
| 2024 |
+
"single_word": false,
|
| 2025 |
+
"special": true
|
| 2026 |
+
},
|
| 2027 |
+
"128250": {
|
| 2028 |
+
"content": "<|gigatoken_251|>",
|
| 2029 |
+
"lstrip": false,
|
| 2030 |
+
"normalized": false,
|
| 2031 |
+
"rstrip": false,
|
| 2032 |
+
"single_word": false,
|
| 2033 |
+
"special": true
|
| 2034 |
+
},
|
| 2035 |
+
"128251": {
|
| 2036 |
+
"content": "<|gigatoken_252|>",
|
| 2037 |
+
"lstrip": false,
|
| 2038 |
+
"normalized": false,
|
| 2039 |
+
"rstrip": false,
|
| 2040 |
+
"single_word": false,
|
| 2041 |
+
"special": true
|
| 2042 |
+
},
|
| 2043 |
+
"128252": {
|
| 2044 |
+
"content": "<|gigatoken_253|>",
|
| 2045 |
+
"lstrip": false,
|
| 2046 |
+
"normalized": false,
|
| 2047 |
+
"rstrip": false,
|
| 2048 |
+
"single_word": false,
|
| 2049 |
+
"special": true
|
| 2050 |
+
},
|
| 2051 |
+
"128253": {
|
| 2052 |
+
"content": "<|gigatoken_254|>",
|
| 2053 |
+
"lstrip": false,
|
| 2054 |
+
"normalized": false,
|
| 2055 |
+
"rstrip": false,
|
| 2056 |
+
"single_word": false,
|
| 2057 |
+
"special": true
|
| 2058 |
+
},
|
| 2059 |
+
"128254": {
|
| 2060 |
+
"content": "<|gigatoken_255|>",
|
| 2061 |
+
"lstrip": false,
|
| 2062 |
+
"normalized": false,
|
| 2063 |
+
"rstrip": false,
|
| 2064 |
+
"single_word": false,
|
| 2065 |
+
"special": true
|
| 2066 |
+
},
|
| 2067 |
+
"128255": {
|
| 2068 |
+
"content": "<|gigatoken_256|>",
|
| 2069 |
+
"lstrip": false,
|
| 2070 |
+
"normalized": false,
|
| 2071 |
+
"rstrip": false,
|
| 2072 |
+
"single_word": false,
|
| 2073 |
+
"special": true
|
| 2074 |
+
}
|
| 2075 |
+
},
|
| 2076 |
+
"bos_token": "<s>",
|
| 2077 |
+
"clean_up_tokenization_spaces": true,
|
| 2078 |
+
"eos_token": "</s>",
|
| 2079 |
+
"extra_special_tokens": {},
|
| 2080 |
+
"max_length": 512,
|
| 2081 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 2082 |
+
"pad_to_multiple_of": null,
|
| 2083 |
+
"pad_token": "<unk>",
|
| 2084 |
+
"pad_token_type_id": 0,
|
| 2085 |
+
"padding_side": "right",
|
| 2086 |
+
"sep_token": "<unk>",
|
| 2087 |
+
"stride": 0,
|
| 2088 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 2089 |
+
"truncation_side": "right",
|
| 2090 |
+
"truncation_strategy": "longest_first",
|
| 2091 |
+
"unk_token": "<unk>"
|
| 2092 |
+
}
|