hemantn commited on
Commit
bb74251
·
0 Parent(s):

Initial commit: AbLang2 Hugging Face implementation

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. LICENSE +21 -0
  3. README.md +111 -0
  4. __init__.py +6 -0
  5. ablang2/__init__.py +1 -0
  6. ablang2/__pycache__/__init__.cpython-310.pyc +0 -0
  7. ablang2/__pycache__/adapter.cpython-310.pyc +0 -0
  8. ablang2/__pycache__/configuration_ablang2paired.cpython-310.pyc +0 -0
  9. ablang2/__pycache__/load_model.cpython-310.pyc +0 -0
  10. ablang2/__pycache__/pretrained.cpython-310.pyc +0 -0
  11. ablang2/adapter.py +306 -0
  12. ablang2/alignment.py +87 -0
  13. ablang2/config.json +18 -0
  14. ablang2/configuration_ablang2paired.py +31 -0
  15. ablang2/encodings.py +97 -0
  16. ablang2/environment.yaml +44 -0
  17. ablang2/extra_utils.py +165 -0
  18. ablang2/hparams.json +1 -0
  19. ablang2/load_model.py +119 -0
  20. ablang2/model.pt +3 -0
  21. ablang2/modeling_ablang2paired.py +81 -0
  22. ablang2/models/__init__.py +0 -0
  23. ablang2/models/__pycache__/__init__.cpython-310.pyc +0 -0
  24. ablang2/models/__pycache__/__init__.cpython-312.pyc +0 -0
  25. ablang2/models/ablang1/__init__.py +3 -0
  26. ablang2/models/ablang1/__pycache__/__init__.cpython-310.pyc +0 -0
  27. ablang2/models/ablang1/__pycache__/__init__.cpython-312.pyc +0 -0
  28. ablang2/models/ablang1/__pycache__/embedding.cpython-310.pyc +0 -0
  29. ablang2/models/ablang1/__pycache__/embedding.cpython-312.pyc +0 -0
  30. ablang2/models/ablang1/__pycache__/encoderblocks.cpython-310.pyc +0 -0
  31. ablang2/models/ablang1/__pycache__/encoderblocks.cpython-312.pyc +0 -0
  32. ablang2/models/ablang1/__pycache__/extra_fns.cpython-310.pyc +0 -0
  33. ablang2/models/ablang1/__pycache__/extra_fns.cpython-312.pyc +0 -0
  34. ablang2/models/ablang1/__pycache__/fairseq_mha.cpython-310.pyc +0 -0
  35. ablang2/models/ablang1/__pycache__/fairseq_mha.cpython-312.pyc +0 -0
  36. ablang2/models/ablang1/__pycache__/model.cpython-310.pyc +0 -0
  37. ablang2/models/ablang1/__pycache__/model.cpython-312.pyc +0 -0
  38. ablang2/models/ablang1/__pycache__/pretrained.cpython-310.pyc +0 -0
  39. ablang2/models/ablang1/__pycache__/pretrained.cpython-312.pyc +0 -0
  40. ablang2/models/ablang1/__pycache__/tokenizers.cpython-310.pyc +0 -0
  41. ablang2/models/ablang1/__pycache__/tokenizers.cpython-312.pyc +0 -0
  42. ablang2/models/ablang1/embedding.py +36 -0
  43. ablang2/models/ablang1/encoderblocks.py +141 -0
  44. ablang2/models/ablang1/extra_fns.py +26 -0
  45. ablang2/models/ablang1/fairseq_mha.py +1306 -0
  46. ablang2/models/ablang1/model.py +102 -0
  47. ablang2/models/ablang1/pretrained.py +358 -0
  48. ablang2/models/ablang1/tokenizers.py +50 -0
  49. ablang2/models/ablang2/__init__.py +0 -0
  50. ablang2/models/ablang2/__pycache__/__init__.cpython-310.pyc +0 -0
.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ *.pt filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 hemantn
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ #language:
3
+ #- en
4
+ license: mit
5
+ tags:
6
+ - biology
7
+ - protein
8
+ - antibody
9
+ - ablang
10
+ - transformers
11
+ - pytorch
12
+ - chemistry
13
+ - oas
14
+ - cdr
15
+ - ablang2 hf implementation
16
+ - roberta
17
+ - ESM
18
+ - ablang2
19
+ - antibody-design
20
+
21
+ # datasets:
22
+ # - oas
23
+ metrics:
24
+ - sequence modeling
25
+ - protein language model
26
+ library_name: transformers
27
+ pipeline_tag: fill-mask
28
+ ---
29
+
30
+ # 🧬 AbLang2: Transformer-based Antibody Language Model
31
+
32
+ This repository provides HuggingFace-compatible 🤗 implementation of the AbLang2 language model for antibodies. The original AbLang2 model was developed by the [Oxford Protein Informatics Group (OPIG)](https://opig.stats.ox.ac.uk/) and is available at:
33
+ - **AbLang2**: [https://github.com/TobiasHeOl/AbLang2](https://github.com/TobiasHeOl/AbLang2)
34
+
35
+ ## 🎯 Model Available
36
+
37
+ - **ablang2**: AbLang2 model for paired antibody sequences
38
+
39
+ ## 📦 Installation
40
+
41
+ Install the required dependencies:
42
+
43
+ ```bash
44
+ pip install transformers torch numpy pandas anarci
45
+ ```
46
+
47
+ ## 🚀 Loading Models
48
+
49
+ ```python
50
+ from transformers import AutoModel, AutoTokenizer
51
+ from adapter import AbLang2PairedHuggingFaceAdapter
52
+
53
+ # AbLang2
54
+ model = AutoModel.from_pretrained("hemantn/ablang2", trust_remote_code=True)
55
+ tokenizer = AutoTokenizer.from_pretrained("hemantn/ablang2", trust_remote_code=True)
56
+ ablang = AbLang2PairedHuggingFaceAdapter(model=model, tokenizer=tokenizer)
57
+ ```
58
+
59
+ **Note**: Models automatically use GPU when available, otherwise fall back to CPU.
60
+
61
+ ## ⚙️ Available Utilities
62
+
63
+ - **seqcoding**: Sequence-level representations (averaged across residues)
64
+ - **rescoding**: Residue-level representations (per-residue embeddings)
65
+ - **likelihood**: Raw logits for amino acid prediction at each position
66
+ - **probability**: Normalized probabilities for amino acid prediction
67
+ - **pseudo_log_likelihood**: Uncertainty scoring with stepwise masking (masks each residue)
68
+ - **confidence**: Fast uncertainty scoring (single forward pass, no masking)
69
+ - **restore**: Restore masked residues (*) with predicted amino acids
70
+
71
+ ## 💡 Examples
72
+
73
+ ### 🔗 AbLang2 (Paired Sequences)
74
+ ```python
75
+ from transformers import AutoModel, AutoTokenizer
76
+ from adapter import AbLang2PairedHuggingFaceAdapter
77
+
78
+ # Load model
79
+ model = AutoModel.from_pretrained("your-username/ablang2", trust_remote_code=True)
80
+ tokenizer = AutoTokenizer.from_pretrained("your-username/ablang2", trust_remote_code=True)
81
+ ablang = AbLang2PairedHuggingFaceAdapter(model=model, tokenizer=tokenizer)
82
+
83
+ # Restore masked paired sequences
84
+ masked_seqs = [
85
+ ['EVQ***SGGEVKKPGASVKVSCRASGYTFRNYGLTWVRQAPGQGLEWMGWISAYNGNTNYAQKFQGRVTLTTDTSTSTAYMELRSLRSDDTAVYFCAR**PGHGAAFMDVWGTGTTVTVSS',
86
+ 'DIQLTQSPLSLPVTLGQPASISCRSS*SLEASDTNIYLSWFQQRPGQSPRRLIYKI*NRDSGVPDRFSGSGSGTHFTLRISRVEADDVAVYYCMQGTHWPPAFGQGTKVDIK']
87
+ ]
88
+ restored = ablang(masked_seqs, mode='restore')
89
+ ```
90
+
91
+ ## 📚 Detailed Usage
92
+
93
+ For comprehensive examples and detailed usage instructions, see:
94
+ - [`test_ablang2_HF_implementation.ipynb`](test_ablang2_HF_implementation.ipynb)
95
+
96
+ This notebook demonstrates all utilities with real examples, including alignment features and advanced usage patterns.
97
+
98
+ ## 📖 Citation
99
+
100
+ If you use these models in your research, please cite the original AbLang2 paper:
101
+
102
+ **AbLang2:**
103
+ ```
104
+ @article{Olsen2024,
105
+ title={Addressing the antibody germline bias and its effect on language models for improved antibody design},
106
+ author={Tobias H. Olsen, Iain H. Moal and Charlotte M. Deane},
107
+ journal={bioRxiv},
108
+ doi={https://doi.org/10.1101/2024.02.02.578678},
109
+ year={2024}
110
+ }
111
+ ```
__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from .configuration_ablang2paired import AbLang2PairedConfig
2
+ from .modeling_ablang2paired import AbLang2PairedHFModel
3
+ from .tokenizer_ablang2paired import AbLang2PairedTokenizer
4
+ from ablang2 import pretrained
5
+
6
+ __all__ = ['AbLang2PairedConfig', 'AbLang2PairedHFModel', 'AbLang2PairedTokenizer']
ablang2/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .pretrained import pretrained
ablang2/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (166 Bytes). View file
 
ablang2/__pycache__/adapter.cpython-310.pyc ADDED
Binary file (10.4 kB). View file
 
ablang2/__pycache__/configuration_ablang2paired.cpython-310.pyc ADDED
Binary file (1.06 kB). View file
 
ablang2/__pycache__/load_model.cpython-310.pyc ADDED
Binary file (3.22 kB). View file
 
ablang2/__pycache__/pretrained.cpython-310.pyc ADDED
Binary file (3.27 kB). View file
 
ablang2/adapter.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ablang2.pretrained_utils.restoration import AbRestore
2
+ from ablang2.pretrained_utils.encodings import AbEncoding
3
+ from ablang2.pretrained_utils.alignment import AbAlignment
4
+ from ablang2.pretrained_utils.scores import AbScores
5
+ import torch
6
+ import numpy as np
7
+ from ablang2.pretrained_utils.extra_utils import res_to_seq, res_to_list
8
+
9
+ class HuggingFaceTokenizerAdapter:
10
+ def __init__(self, tokenizer, device):
11
+ self.tokenizer = tokenizer
12
+ self.device = device
13
+ self.pad_token_id = tokenizer.pad_token_id
14
+ self.mask_token_id = getattr(tokenizer, 'mask_token_id', None) or tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
15
+ self.vocab = tokenizer.get_vocab() if hasattr(tokenizer, 'get_vocab') else tokenizer.vocab
16
+ self.inv_vocab = {v: k for k, v in self.vocab.items()}
17
+ self.all_special_tokens = tokenizer.all_special_tokens
18
+
19
+ def __call__(self, seqs, pad=True, w_extra_tkns=False, device=None, mode=None):
20
+ tokens = self.tokenizer(seqs, padding=True, return_tensors='pt')
21
+ input_ids = tokens['input_ids'].to(self.device if device is None else device)
22
+ if mode == 'decode':
23
+ # seqs is a tensor of token ids
24
+ if isinstance(seqs, torch.Tensor):
25
+ seqs = seqs.cpu().numpy()
26
+ decoded = []
27
+ for i, seq in enumerate(seqs):
28
+ chars = [self.inv_vocab.get(int(t), '') for t in seq if self.inv_vocab.get(int(t), '') not in {'-', '*', '<', '>'} and self.inv_vocab.get(int(t), '') != '']
29
+ # Use res_to_seq for formatting, pass (sequence, length) tuple as in original code
30
+ # The length is not always available, so use len(chars) as fallback
31
+ formatted = res_to_seq([ ''.join(chars), len(chars) ], mode='restore')
32
+ decoded.append(formatted)
33
+ return decoded
34
+ return input_ids
35
+
36
+ class HFAbRestore(AbRestore):
37
+ def __init__(self, hf_model, hf_tokenizer, spread=11, device='cpu', ncpu=1):
38
+ super().__init__(spread=spread, device=device, ncpu=ncpu)
39
+ self.used_device = device
40
+ self._hf_model = hf_model
41
+ self.tokenizer = HuggingFaceTokenizerAdapter(hf_tokenizer, device)
42
+
43
+ @property
44
+ def AbLang(self):
45
+ def model_call(x):
46
+ output = self._hf_model(x)
47
+ if hasattr(output, 'last_hidden_state'):
48
+ return output.last_hidden_state
49
+ return output
50
+ return model_call
51
+
52
+ def add_angle_brackets(seq):
53
+ # Assumes input is 'VH|VL' or 'VH|' or '|VL'
54
+ if '|' in seq:
55
+ vh, vl = seq.split('|', 1)
56
+ else:
57
+ vh, vl = seq, ''
58
+ return f"<{vh}>|<{vl}>"
59
+
60
+ class AbLang2PairedHuggingFaceAdapter(AbEncoding, AbRestore, AbAlignment, AbScores):
61
+ """
62
+ Adapter to use pretrained utilities with a HuggingFace-loaded ablang2_paired model and tokenizer.
63
+ Automatically uses CUDA if available, otherwise CPU.
64
+ """
65
+ def __init__(self, model, tokenizer, device=None, ncpu=1):
66
+ super().__init__()
67
+ if device is None:
68
+ self.used_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
69
+ else:
70
+ self.used_device = torch.device(device)
71
+ self.AbLang = model # HuggingFace model instance
72
+ self.tokenizer = tokenizer
73
+ self.AbLang.to(self.used_device)
74
+ self.AbLang.eval()
75
+ # Always get AbRep from the underlying model
76
+ if hasattr(self.AbLang, 'model') and hasattr(self.AbLang.model, 'AbRep'):
77
+ self.AbRep = self.AbLang.model.AbRep
78
+ else:
79
+ raise AttributeError("Could not find AbRep in the HuggingFace model or its underlying model.")
80
+ self.ncpu = ncpu
81
+ self.spread = 11 # For compatibility with original utilities
82
+ # The following is no longer needed since all_special_tokens now returns IDs directly
83
+ # self.tokenizer.all_special_token_ids = [
84
+ # self.tokenizer.convert_tokens_to_ids(tok) for tok in self.tokenizer.all_special_tokens
85
+ # ]
86
+ # self.tokenizer._all_special_tokens_str = self.tokenizer.all_special_tokens
87
+ # self.tokenizer.all_special_tokens = [
88
+ # self.tokenizer.convert_tokens_to_ids(tok) for tok in self.tokenizer._all_special_tokens_str
89
+ # ]
90
+
91
+ def freeze(self):
92
+ self.AbLang.eval()
93
+
94
+ def unfreeze(self):
95
+ self.AbLang.train()
96
+
97
+ def _encode_sequences(self, seqs):
98
+ # Use HuggingFace-style padding and return PyTorch tensors
99
+ tokens = self.tokenizer(seqs, padding=True, return_tensors='pt')
100
+ tokens = extract_input_ids(tokens, self.used_device)
101
+ return self.AbRep(tokens).last_hidden_states.detach()
102
+
103
+ def _predict_logits(self, seqs):
104
+ tokens = self.tokenizer(seqs, padding=True, return_tensors='pt')
105
+ tokens = extract_input_ids(tokens, self.used_device)
106
+ output = self.AbLang(tokens)
107
+ if hasattr(output, 'last_hidden_state'):
108
+ return output.last_hidden_state.detach()
109
+ return output.detach()
110
+
111
+ def _preprocess_labels(self, labels):
112
+ labels = extract_input_ids(labels, self.used_device)
113
+ return labels
114
+
115
+ def __call__(self, seqs, mode='seqcoding', align=False, stepwise_masking=False, fragmented=False, batch_size=50):
116
+ """
117
+ Use different modes for different usecases, mimicking the original pretrained class.
118
+ """
119
+ from ablang2.pretrained import format_seq_input
120
+
121
+ valid_modes = [
122
+ 'rescoding', 'seqcoding', 'restore', 'likelihood', 'probability',
123
+ 'pseudo_log_likelihood', 'confidence'
124
+ ]
125
+ if mode not in valid_modes:
126
+ raise SyntaxError(f"Given mode doesn't exist. Please select one of the following: {valid_modes}.")
127
+
128
+ seqs, chain = format_seq_input(seqs, fragmented=fragmented)
129
+
130
+ if align:
131
+ numbered_seqs, seqs, number_alignment = self.number_sequences(
132
+ seqs, chain=chain, fragmented=fragmented
133
+ )
134
+ else:
135
+ numbered_seqs = None
136
+ number_alignment = None
137
+
138
+ subset_list = []
139
+ for subset in [seqs[x:x+batch_size] for x in range(0, len(seqs), batch_size)]:
140
+ subset_list.append(getattr(self, mode)(subset, align=align, stepwise_masking=stepwise_masking))
141
+
142
+ return self.reformat_subsets(
143
+ subset_list,
144
+ mode=mode,
145
+ align=align,
146
+ numbered_seqs=numbered_seqs,
147
+ seqs=seqs,
148
+ number_alignment=number_alignment,
149
+ )
150
+
151
+ def pseudo_log_likelihood(self, seqs, **kwargs):
152
+ """
153
+ Original (non-vectorized) pseudo log-likelihood computation matching notebook behavior.
154
+ """
155
+ # Format input: join VH and VL with '|'
156
+ formatted_seqs = []
157
+ for s in seqs:
158
+ if isinstance(s, (list, tuple)):
159
+ formatted_seqs.append('|'.join(s))
160
+ else:
161
+ formatted_seqs.append(s)
162
+
163
+ # Tokenize all sequences in batch
164
+ labels = self.tokenizer(
165
+ formatted_seqs, padding=True, return_tensors='pt'
166
+ )
167
+ labels = extract_input_ids(labels, self.used_device)
168
+
169
+ # Convert special tokens to IDs
170
+ if isinstance(self.tokenizer.all_special_tokens[0], int):
171
+ special_token_ids = set(self.tokenizer.all_special_tokens)
172
+ else:
173
+ special_token_ids = set(self.tokenizer.convert_tokens_to_ids(tok) for tok in self.tokenizer.all_special_tokens)
174
+ pad_token_id = self.tokenizer.pad_token_id
175
+
176
+ mask_token_id = getattr(self.tokenizer, 'mask_token_id', None)
177
+ if mask_token_id is None:
178
+ mask_token_id = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
179
+
180
+ plls = []
181
+ with torch.no_grad():
182
+ for i, seq_label in enumerate(labels):
183
+ seq_pll = []
184
+ for j, token_id in enumerate(seq_label):
185
+ if token_id.item() in special_token_ids or token_id.item() == pad_token_id:
186
+ continue
187
+ masked = seq_label.clone()
188
+ masked[j] = mask_token_id
189
+ logits = self.AbLang(masked.unsqueeze(0))
190
+ if hasattr(logits, 'last_hidden_state'):
191
+ logits = logits.last_hidden_state
192
+ logits = logits[0, j]
193
+ nll = torch.nn.functional.cross_entropy(
194
+ logits.unsqueeze(0), token_id.unsqueeze(0), reduction="none"
195
+ )
196
+ seq_pll.append(-nll.item())
197
+ if seq_pll:
198
+ plls.append(np.mean(seq_pll))
199
+ else:
200
+ plls.append(float('nan'))
201
+ return np.array(plls)
202
+
203
+ def confidence(self, seqs, **kwargs):
204
+ """Confidence calculation - match original ablang2 implementation by excluding all special tokens from loss."""
205
+ # Format input: join VH and VL with '|'
206
+ formatted_seqs = []
207
+ for s in seqs:
208
+ if isinstance(s, (list, tuple)):
209
+ formatted_seqs.append('|'.join(s))
210
+ else:
211
+ formatted_seqs.append(s)
212
+
213
+ plls = []
214
+ for seq in formatted_seqs:
215
+ tokens = self.tokenizer([seq], padding=True, return_tensors='pt')
216
+ input_ids = extract_input_ids(tokens, self.used_device)
217
+
218
+ with torch.no_grad():
219
+ output = self.AbLang(input_ids)
220
+ if hasattr(output, 'last_hidden_state'):
221
+ logits = output.last_hidden_state
222
+ else:
223
+ logits = output
224
+
225
+ # Get the sequence (remove batch dimension)
226
+ logits = logits[0] # [seq_len, vocab_size]
227
+ input_ids = input_ids[0] # [seq_len]
228
+
229
+ # Exclude all special tokens (pad, mask, etc.)
230
+ if isinstance(self.tokenizer.all_special_tokens[0], int):
231
+ special_token_ids = set(self.tokenizer.all_special_tokens)
232
+ else:
233
+ special_token_ids = set(self.tokenizer.convert_tokens_to_ids(tok) for tok in self.tokenizer.all_special_tokens)
234
+ valid_mask = ~torch.isin(input_ids, torch.tensor(list(special_token_ids), device=input_ids.device))
235
+
236
+ if valid_mask.sum() > 0:
237
+ valid_logits = logits[valid_mask]
238
+ valid_labels = input_ids[valid_mask]
239
+
240
+ # Calculate cross-entropy loss
241
+ nll = torch.nn.functional.cross_entropy(
242
+ valid_logits,
243
+ valid_labels,
244
+ reduction="mean"
245
+ )
246
+ pll = -nll.item()
247
+ else:
248
+ pll = 0.0
249
+
250
+ plls.append(pll)
251
+
252
+ return np.array(plls, dtype=np.float32)
253
+
254
+ def probability(self, seqs, align=False, stepwise_masking=False, **kwargs):
255
+ """
256
+ Probability of mutations - applies softmax to logits to get probabilities
257
+ """
258
+ # Format input: join VH and VL with '|'
259
+ formatted_seqs = []
260
+ for s in seqs:
261
+ if isinstance(s, (list, tuple)):
262
+ formatted_seqs.append('|'.join(s))
263
+ else:
264
+ formatted_seqs.append(s)
265
+
266
+ # Get logits
267
+ if stepwise_masking:
268
+ # For stepwise masking, we need to implement it similar to likelihood
269
+ # This is a simplified version - you might want to implement full stepwise masking
270
+ logits = self._predict_logits(formatted_seqs)
271
+ else:
272
+ logits = self._predict_logits(formatted_seqs)
273
+
274
+ # Apply softmax to get probabilities
275
+ probs = logits.softmax(-1).cpu().numpy()
276
+
277
+ if align:
278
+ return probs
279
+ else:
280
+ # Return residue-level probabilities (excluding special tokens)
281
+ return [res_to_list(state, seq) for state, seq in zip(probs, formatted_seqs)]
282
+
283
+ def restore(self, seqs, align=False, **kwargs):
284
+ hf_abrestore = HFAbRestore(self.AbLang, self.tokenizer, spread=self.spread, device=self.used_device, ncpu=self.ncpu)
285
+ restored = hf_abrestore.restore(seqs, align=align)
286
+ # Apply angle brackets formatting
287
+ if isinstance(restored, np.ndarray):
288
+ restored = np.array([add_angle_brackets(seq) for seq in restored])
289
+ else:
290
+ restored = [add_angle_brackets(seq) for seq in restored]
291
+ return restored
292
+
293
+ def extract_input_ids(tokens, device):
294
+ if hasattr(tokens, 'input_ids'):
295
+ return tokens.input_ids.to(device)
296
+ elif isinstance(tokens, dict):
297
+ if 'input_ids' in tokens:
298
+ return tokens['input_ids'].to(device)
299
+ else:
300
+ for v in tokens.values():
301
+ if hasattr(v, 'ndim') or torch.is_tensor(v):
302
+ return v.to(device)
303
+ elif torch.is_tensor(tokens):
304
+ return tokens.to(device)
305
+ else:
306
+ raise ValueError("Could not extract input_ids from tokenizer output")
ablang2/alignment.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ import numpy as np
3
+ import torch
4
+
5
+ from .extra_utils import paired_msa_numbering, unpaired_msa_numbering, create_alignment
6
+
7
+
8
+ class AbAlignment:
9
+
10
+ def __init__(self, device = 'cpu', ncpu = 1):
11
+
12
+ self.device = device
13
+ self.ncpu = ncpu
14
+
15
+ def number_sequences(self, seqs, chain = 'H', fragmented = False):
16
+ if chain == 'HL':
17
+ numbered_seqs, seqs, number_alignment = paired_msa_numbering(seqs, fragmented = fragmented, n_jobs = self.ncpu)
18
+ else:
19
+ assert chain == 'HL', 'Currently "Align==True" only works for paired sequences. \nPlease use paired sequences or Align=False.'
20
+ numbered_seqs, seqs, number_alignment = unpaired_msa_numbering(
21
+ seqs, chain = chain, fragmented = fragmented, n_jobs = self.ncpu
22
+ )
23
+
24
+ return numbered_seqs, seqs, number_alignment
25
+
26
+ def align_encodings(self, encodings, numbered_seqs, seqs, number_alignment):
27
+
28
+ aligned_encodings = np.concatenate(
29
+ [[
30
+ create_alignment(
31
+ res_embed, numbered_seq, seq, number_alignment
32
+ ) for res_embed, numbered_seq, seq in zip(encodings, numbered_seqs, seqs)
33
+ ]], axis=0
34
+ )
35
+ return aligned_encodings
36
+
37
+
38
+ def reformat_subsets(
39
+ self,
40
+ subset_list,
41
+ mode = 'seqcoding',
42
+ align = False,
43
+ numbered_seqs = None,
44
+ seqs = None,
45
+ number_alignment = None,
46
+ ):
47
+
48
+ if mode in [
49
+ 'seqcoding',
50
+ 'restore',
51
+ 'pseudo_log_likelihood',
52
+ 'confidence'
53
+ ]:
54
+ return np.concatenate(subset_list)
55
+ elif align:
56
+ subset_list = [
57
+ self.align_encodings(
58
+ subset,
59
+ numbered_seqs[num*len(subset):(num+1)*len(subset)],
60
+ seqs[num*len(subset):(num+1)*len(subset)],
61
+ number_alignment
62
+ ) for num, subset in enumerate(subset_list)
63
+ ]
64
+
65
+ subset = np.concatenate(subset_list)
66
+
67
+ return aligned_results(
68
+ aligned_seqs = [''.join(alist) for alist in subset[:,:,-1]],
69
+ aligned_embeds = subset[:,:,:-1].astype(float),
70
+ number_alignment=number_alignment.apply(lambda x: '{}{}'.format(*x[0]), axis=1).values
71
+ )
72
+
73
+ elif not align:
74
+ return sum(subset_list, [])
75
+ else:
76
+ return np.concatenate(subset_list) # this needs to be changed
77
+
78
+
79
+ @dataclass
80
+ class aligned_results():
81
+ """
82
+ Dataclass used to store output.
83
+ """
84
+
85
+ aligned_seqs: None
86
+ aligned_embeds: None
87
+ number_alignment: None
ablang2/config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "ablang2-paired",
3
+ "vocab_size": 26,
4
+ "hidden_embed_size": 480,
5
+ "n_attn_heads": 20,
6
+ "n_encoder_blocks": 12,
7
+ "padding_tkn": 21,
8
+ "mask_tkn": 23,
9
+ "layer_norm_eps": 1e-12,
10
+ "a_fn": "swiglu",
11
+ "dropout": 0.0,
12
+ "tokenizer_class": "AbLang2PairedTokenizer",
13
+ "auto_map": {
14
+ "AutoConfig": "configuration_ablang2paired.AbLang2PairedConfig",
15
+ "AutoModel": "modeling_ablang2paired.AbLang2PairedHFModel",
16
+ "AutoTokenizer": ["tokenizer_ablang2paired.AbLang2PairedTokenizer", "tokenizer_ablang2paired.AbLang2PairedTokenizer"]
17
+ }
18
+ }
ablang2/configuration_ablang2paired.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class AbLang2PairedConfig(PretrainedConfig):
4
+ model_type = "ablang2-paired"
5
+
6
+ def __init__(
7
+ self,
8
+ vocab_size=26,
9
+ hidden_embed_size=480,
10
+ n_attn_heads=20,
11
+ n_encoder_blocks=12,
12
+ padding_tkn=21,
13
+ mask_tkn=23,
14
+ layer_norm_eps=1e-12,
15
+ a_fn="swiglu",
16
+ dropout=0.0,
17
+ **kwargs
18
+ ):
19
+ super().__init__(**kwargs)
20
+ self.vocab_size = vocab_size
21
+ self.hidden_embed_size = hidden_embed_size
22
+ self.hidden_size = hidden_embed_size # Add this for Hugging Face compatibility
23
+ self.n_attn_heads = n_attn_heads
24
+ self.num_attention_heads = n_attn_heads # Add this for Hugging Face compatibility
25
+ self.num_hidden_layers = n_encoder_blocks # Add this for Hugging Face compatibility
26
+ self.n_encoder_blocks = n_encoder_blocks
27
+ self.padding_tkn = padding_tkn
28
+ self.mask_tkn = mask_tkn
29
+ self.layer_norm_eps = layer_norm_eps
30
+ self.a_fn = a_fn
31
+ self.dropout = dropout
ablang2/encodings.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+
4
+ from .extra_utils import res_to_list, res_to_seq
5
+
6
+
7
+ class AbEncoding:
8
+
9
+ def __init__(self, device = 'cpu', ncpu = 1):
10
+
11
+ self.device = device
12
+ self.ncpu = ncpu
13
+
14
+ def _initiate_abencoding(self, model, tokenizer):
15
+ self.AbLang = model
16
+ self.tokenizer = tokenizer
17
+
18
+ def _encode_sequences(self, seqs):
19
+ tokens = self.tokenizer(seqs, pad=True, w_extra_tkns=False, device=self.used_device)
20
+ with torch.no_grad():
21
+ return self.AbLang.AbRep(tokens).last_hidden_states
22
+
23
+ def _predict_logits(self, seqs):
24
+ tokens = self.tokenizer(seqs, pad=True, w_extra_tkns=False, device=self.used_device)
25
+ with torch.no_grad():
26
+ return self.AbLang(tokens)
27
+
28
+ def _predict_logits_with_step_masking(self, seqs):
29
+
30
+ tokens = self.tokenizer(seqs, pad=True, w_extra_tkns=False, device=self.used_device)
31
+
32
+ logits = []
33
+ for single_seq_tokens in tokens:
34
+
35
+ tkn_len = len(single_seq_tokens)
36
+ masked_tokens = single_seq_tokens.repeat(tkn_len, 1)
37
+ for num in range(tkn_len):
38
+ masked_tokens[num, num] = self.tokenizer.mask_token
39
+
40
+ with torch.no_grad():
41
+ logits_tmp = self.AbLang(masked_tokens)
42
+
43
+ logits_tmp = torch.stack([logits_tmp[num, num] for num in range(tkn_len)])
44
+
45
+ logits.append(logits_tmp)
46
+
47
+ return torch.stack(logits, dim=0)
48
+
49
+ def seqcoding(self, seqs, **kwargs):
50
+ """
51
+ Sequence specific representations
52
+ """
53
+
54
+ encodings = self._encode_sequences(seqs).cpu().numpy()
55
+
56
+ lens = np.vectorize(len)(seqs)
57
+ lens = np.tile(lens.reshape(-1,1,1), (encodings.shape[2], 1))
58
+
59
+ return np.apply_along_axis(res_to_seq, 2, np.c_[np.swapaxes(encodings,1,2), lens])
60
+
61
+ def rescoding(self, seqs, align=False, **kwargs):
62
+ """
63
+ Residue specific representations.
64
+ """
65
+ encodings = self._encode_sequences(seqs).cpu().numpy()
66
+
67
+ if align: return encodings
68
+
69
+ else: return [res_to_list(state, seq) for state, seq in zip(encodings, seqs)]
70
+
71
+ def likelihood(self, seqs, align=False, stepwise_masking=False, **kwargs):
72
+ """
73
+ Likelihood of mutations
74
+ """
75
+ if stepwise_masking:
76
+ logits = self._predict_logits_with_step_masking(seqs).cpu().numpy()
77
+ else:
78
+ logits = self._predict_logits(seqs).cpu().numpy()
79
+
80
+ if align: return logits
81
+
82
+ else: return [res_to_list(state, seq) for state, seq in zip(logits, seqs)]
83
+
84
+ def probability(self, seqs, align=False, stepwise_masking=False, **kwargs):
85
+ """
86
+ Probability of mutations
87
+ """
88
+ if stepwise_masking:
89
+ logits = self._predict_logits_with_step_masking(seqs)
90
+ else:
91
+ logits = self._predict_logits(seqs)
92
+ probs = logits.softmax(-1).cpu().numpy()
93
+
94
+ if align: return probs
95
+
96
+ else: return [res_to_list(state, seq) for state, seq in zip(probs, seqs)]
97
+
ablang2/environment.yaml ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: AbLang
2
+ channels:
3
+ - conda-forge
4
+ - pytorch
5
+ - bioconda
6
+ - defaults
7
+ dependencies:
8
+ - python=3.10.18
9
+ - pip
10
+ - pytorch=2.5.1
11
+ - pytorch-cuda=12.4
12
+ - numpy=2.2.6
13
+ - pandas=2.3.1
14
+ - transformers=4.53.3
15
+ - anarci=2024.05.21
16
+ - jupyter=7.4.4
17
+ - notebook=7.4.4
18
+ - ipython=8.37.0
19
+ - ipykernel=6.29.5
20
+ - matplotlib-inline=0.1.7
21
+ - scikit-learn
22
+ - matplotlib
23
+ - seaborn
24
+ - biopython=1.85
25
+ - huggingface_hub=0.33.4
26
+ - tokenizers=0.21.3
27
+ - safetensors=0.5.3
28
+ - einops=0.8.1
29
+ - tqdm=4.67.1
30
+ - requests=2.32.4
31
+ - urllib3=2.5.0
32
+ - certifi=2025.7.14
33
+ - filelock=3.18.0
34
+ - fsspec=2025.3.0
35
+ - packaging=25.0
36
+ - regex=2024.11.6
37
+ - sympy=1.13.3
38
+ - networkx=3.4.2
39
+ - jinja2=3.1.6
40
+ - pyyaml=6.0.2
41
+ - typing_extensions=4.14.1
42
+ - pip:
43
+ - numba=0.61.2
44
+ - llvmlite=0.44.0
ablang2/extra_utils.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import string, re
2
+ import numpy as np
3
+
4
+
5
+ def res_to_list(logits, seq):
6
+ return logits[:len(seq)]
7
+
8
+ def res_to_seq(a, mode='mean'):
9
+ """
10
+ Function for how we go from n_values for each amino acid to n_values for each sequence.
11
+
12
+ We leave out padding tokens.
13
+ """
14
+
15
+ if mode=='sum':
16
+ return a[0:(int(a[-1]))].sum()
17
+
18
+ elif mode=='mean':
19
+ return a[0:(int(a[-1]))].mean()
20
+
21
+ elif mode=='restore':
22
+ return a[0][0:(int(a[-1]))]
23
+
24
+ def get_number_alignment(numbered_seqs):
25
+ """
26
+ Creates a number alignment from the anarci results.
27
+ """
28
+ import pandas as pd
29
+
30
+ alist = [pd.DataFrame(aligned_seq, columns = [0,1,'resi']) for aligned_seq in numbered_seqs]
31
+ unsorted_alignment = pd.concat(alist).drop_duplicates(subset=0)
32
+ max_alignment = get_max_alignment()
33
+
34
+ return max_alignment.merge(unsorted_alignment.query("resi!='-'"), left_on=0, right_on=0)[[0,1]]
35
+
36
+ def get_max_alignment():
37
+ """
38
+ Create maximum possible alignment for sorting
39
+ """
40
+ import pandas as pd
41
+
42
+ sortlist = [[("<", "")]]
43
+ for num in range(1, 128+1):
44
+ if num in [33,61,112]:
45
+ for char in string.ascii_uppercase[::-1]:
46
+ sortlist.append([(num, char)])
47
+
48
+ sortlist.append([(num,' ')])
49
+ else:
50
+ sortlist.append([(num,' ')])
51
+ for char in string.ascii_uppercase:
52
+ sortlist.append([(num, char)])
53
+
54
+ return pd.DataFrame(sortlist + [[(">", "")]])
55
+
56
+
57
+ def paired_msa_numbering(ab_seqs, fragmented = False, n_jobs = 10):
58
+
59
+ import pandas as pd
60
+
61
+ tmp_seqs = [pairs.replace(">", "").replace("<", "").split("|") for pairs in ab_seqs]
62
+
63
+ numbered_seqs_heavy, seqs_heavy, number_alignment_heavy = unpaired_msa_numbering(
64
+ [i[0] for i in tmp_seqs], 'H', fragmented = fragmented, n_jobs = n_jobs
65
+ )
66
+ numbered_seqs_light, seqs_light, number_alignment_light = unpaired_msa_numbering(
67
+ [i[1] for i in tmp_seqs], 'L', fragmented = fragmented, n_jobs = n_jobs
68
+ )
69
+
70
+ number_alignment = pd.concat([
71
+ number_alignment_heavy,
72
+ pd.DataFrame([[("|",""), "|"]]),
73
+ number_alignment_light]
74
+ ).reset_index(drop=True)
75
+
76
+ seqs = [f"{heavy}|{light}" for heavy, light in zip(seqs_heavy, seqs_light)]
77
+ numbered_seqs = [
78
+ heavy + [(("|",""), "|", "|")] + light for heavy, light in zip(numbered_seqs_heavy, numbered_seqs_light)
79
+ ]
80
+
81
+ return numbered_seqs, seqs, number_alignment
82
+
83
+
84
+ def unpaired_msa_numbering(seqs, chain = 'H', fragmented = False, n_jobs = 10):
85
+
86
+ numbered_seqs = number_with_anarci(seqs, chain = chain, fragmented = fragmented, n_jobs = n_jobs)
87
+ number_alignment = get_number_alignment(numbered_seqs)
88
+ number_alignment[1] = chain
89
+
90
+ seqs = [''.join([i[2] for i in numbered_seq]).replace('-','') for numbered_seq in numbered_seqs]
91
+ return numbered_seqs, seqs, number_alignment
92
+
93
+
94
+ def number_with_anarci(seqs, chain = 'H', fragmented = False, n_jobs = 1):
95
+
96
+ import anarci
97
+ import pandas as pd
98
+
99
+ anarci_out = anarci.run_anarci(
100
+ pd.DataFrame(seqs).reset_index().values.tolist(),
101
+ ncpu=n_jobs,
102
+ scheme='imgt',
103
+ allowed_species=['human', 'mouse'],
104
+ )
105
+
106
+ numbered_seqs = []
107
+ for onarci in anarci_out[1]:
108
+ numbered_seq = []
109
+ for i in onarci[0][0]:
110
+ if i[1] != '-':
111
+ numbered_seq.append((i[0], chain, i[1]))
112
+
113
+ if fragmented:
114
+ numbered_seqs.append(numbered_seq)
115
+ else:
116
+ numbered_seqs.append([(("<",""), chain, "<")] + numbered_seq + [((">",""), chain, ">")])
117
+
118
+ return numbered_seqs
119
+
120
+
121
+ def create_alignment(res_embeds, numbered_seqs, seq, number_alignment):
122
+
123
+ import pandas as pd
124
+
125
+ datadf = pd.DataFrame(numbered_seqs)
126
+ sequence_alignment = number_alignment.merge(datadf, how='left', on=[0, 1]).fillna('-')[2]
127
+
128
+ idxs = np.where(sequence_alignment.values == '-')[0]
129
+ idxs = [idx-num for num, idx in enumerate(idxs)]
130
+
131
+ aligned_embeds = pd.DataFrame(np.insert(res_embeds[:len(seq)], idxs , 0, axis=0))
132
+
133
+ return pd.concat([aligned_embeds, sequence_alignment], axis=1).values
134
+
135
+
136
+ def get_spread_sequences(seq, spread, start_position):
137
+ """
138
+ Test sequences which are 8 positions shorter (position 10 + max CDR1 gap of 7) up to 2 positions longer (possible insertions).
139
+ """
140
+ spread_sequences = []
141
+
142
+ for diff in range(start_position-8, start_position+2+1):
143
+ spread_sequences.append('*'*diff+seq)
144
+
145
+ return np.array(spread_sequences)
146
+
147
+ def get_sequences_from_anarci(out_anarci, max_position, spread):
148
+ """
149
+ Ensures correct masking on each side of sequence
150
+ """
151
+
152
+ if out_anarci == 'ANARCI_error':
153
+ return np.array(['ANARCI-ERR']*spread)
154
+
155
+ end_position = int(re.search(r'\d+', out_anarci[::-1]).group()[::-1])
156
+ # Fixes ANARCI error of poor numbering of the CDR1 region
157
+ start_position = int(re.search(r'\d+,\s\'.\'\),\s\'[^-]+\'\),\s\(\(\d+,\s\'.\'\),\s\'[^-]+\'\),\s\(\(\d+,\s\'.\'\),\s\'[^-]+\'\),\s\(\(\d+,\s\'.\'\),\s\'[^-]+',
158
+ out_anarci).group().split(',')[0]) - 1
159
+
160
+ sequence = "".join(re.findall(r"(?i)[A-Z*]", "".join(re.findall(r'\),\s\'[A-Z*]', out_anarci))))
161
+
162
+ sequence_j = ''.join(sequence).replace('-','').replace('X','*') + '*'*(max_position-int(end_position))
163
+
164
+ return get_spread_sequences(sequence_j, spread, start_position)
165
+
ablang2/hparams.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"name": "AbLang-2", "n_encoder_blocks": 12, "hidden_embed_size": 480, "n_attn_heads": 20, "a_fn": "swiglu", "layer_norm_eps": 1e-12, "pad_tkn": 21, "start_tkn": 0, "end_tkn": 22, "sep_tkn": 25, "mask_tkn": 23, "vocab_size": 26}
ablang2/load_model.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, subprocess, json, argparse,requests
2
+ import torch
3
+
4
+ list_of_models = {
5
+ "ablang1-heavy":["https://opig.stats.ox.ac.uk/data/downloads/ablang-heavy.tar.gz", "amodel.pt"],
6
+ "ablang1-light":["https://opig.stats.ox.ac.uk/data/downloads/ablang-light.tar.gz", "amodel.pt"],
7
+ "ablang2-paired":["https://zenodo.org/records/10185169/files/ablang2-weights.tar.gz", "model.pt"],
8
+ "tcrlang-paired":["https://zenodo.org/records/11208211/files/tcrlang-weights.tar.gz", "model.pt"],
9
+ }
10
+ ablang1_models = ["ablang1-heavy", "ablang1-light"]
11
+ ablang2_models = ["ablang2-paired", "tcrlang-paired"]
12
+
13
+
14
+ def load_model(model_to_use = "ablang2-paired", random_init = False, device = 'cpu'):
15
+
16
+ if model_to_use in ablang1_models:
17
+ AbLang, tokenizer, hparams = fetch_ablang1(
18
+ model_to_use,
19
+ random_init=random_init,
20
+ device=device
21
+ )
22
+ elif model_to_use in ablang2_models:
23
+ AbLang, tokenizer, hparams = fetch_ablang2(
24
+ model_to_use,
25
+ random_init=random_init,
26
+ device=device
27
+ )
28
+ elif "ABLANG-" in model_to_use:
29
+ AbLang, tokenizer, hparams = fetch_ablang2(
30
+ model_to_use,
31
+ random_init=random_init,
32
+ device=device
33
+ )
34
+ else:
35
+ assert False, f"The selected model to use ({model_to_use}) does not exist.\
36
+ Please select a valid model."
37
+
38
+ return AbLang, tokenizer, hparams
39
+
40
+
41
+ def download_model(model_to_use = "ablang2-paired"):
42
+ """
43
+ If not already downloaded, download model inside environment.
44
+ """
45
+
46
+ local_model_folder = os.path.join(os.path.dirname(__file__), "model-weights-{}".format(model_to_use))
47
+ os.makedirs(local_model_folder, exist_ok = True)
48
+
49
+ file_w_weights, file_model = list_of_models[model_to_use] # modify list of models
50
+
51
+ if not os.path.isfile(os.path.join(local_model_folder, file_model)):
52
+ print("Downloading model ...")
53
+ tmp_file = os.path.join(local_model_folder, "tmp.tar.gz")
54
+
55
+ with open(tmp_file,'wb') as f: f.write(requests.get(file_w_weights).content)
56
+
57
+ subprocess.run(["tar", "-zxvf", tmp_file, "-C", local_model_folder], check = True)
58
+ os.remove(tmp_file)
59
+
60
+ return local_model_folder
61
+
62
+
63
+ def fetch_ablang1(model_to_use, random_init=False, device='cpu'):
64
+
65
+ from .models.ablang1 import model as ablang_1_model
66
+ from .models.ablang1 import tokenizers as ablang_1_tokenizer
67
+
68
+ local_model_folder = download_model(model_to_use)
69
+
70
+ with open(os.path.join(local_model_folder, 'hparams.json'), 'r', encoding='utf-8') as f:
71
+ hparams = argparse.Namespace(**json.load(f))
72
+
73
+ AbLang = ablang_1_model.AbLang(hparams)
74
+ if not random_init:
75
+ AbLang.load_state_dict(
76
+ torch.load(
77
+ os.path.join(local_model_folder, 'amodel.pt'),
78
+ map_location=torch.device(device)
79
+ )
80
+ )
81
+ tokenizer = ablang_1_tokenizer.ABtokenizer(os.path.join(local_model_folder, 'vocab.json'))
82
+
83
+ return AbLang, tokenizer, hparams
84
+
85
+
86
+ def fetch_ablang2(model_to_use, random_init=False, device='cpu'):
87
+
88
+ from .models.ablang2 import ablang
89
+ from .models.ablang2 import tokenizers
90
+
91
+ if model_to_use in ablang2_models:
92
+ local_model_folder = download_model(model_to_use)
93
+ else:
94
+ local_model_folder = model_to_use
95
+
96
+ with open(os.path.join(local_model_folder, 'hparams.json'), 'r', encoding='utf-8') as f:
97
+ hparams = argparse.Namespace(**json.load(f))
98
+
99
+ AbLang = ablang.AbLang(
100
+ vocab_size = hparams.vocab_size,
101
+ hidden_embed_size = hparams.hidden_embed_size,
102
+ n_attn_heads = hparams.n_attn_heads,
103
+ n_encoder_blocks = hparams.n_encoder_blocks,
104
+ padding_tkn = hparams.pad_tkn,
105
+ mask_tkn = hparams.mask_tkn,
106
+ layer_norm_eps = hparams.layer_norm_eps,
107
+ a_fn = hparams.a_fn,
108
+ )
109
+
110
+ if not random_init:
111
+ AbLang.load_state_dict(
112
+ torch.load(
113
+ os.path.join(local_model_folder, 'model.pt'),
114
+ map_location=torch.device(device)
115
+ )
116
+ )
117
+ tokenizer = tokenizers.ABtokenizer()
118
+
119
+ return AbLang, tokenizer, hparams
ablang2/model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56d6f07862a6f824f88c8707bbc03e4026c9db762be2d3041e9767e2e6f86386
3
+ size 179314477
ablang2/modeling_ablang2paired.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import os
3
+ from torch import nn
4
+ from transformers import PreTrainedModel
5
+ from ablang2.models.ablang2.ablang import AbLang as AbLang2
6
+ from ablang2_paired.configuration_ablang2paired import AbLang2PairedConfig
7
+
8
+ class AbLang2PairedHFModel(PreTrainedModel):
9
+ config_class = AbLang2PairedConfig
10
+ model_type = "ablang2-paired"
11
+
12
+ def __init__(self, config: AbLang2PairedConfig):
13
+ super().__init__(config)
14
+ self.model = AbLang2(
15
+ vocab_size=config.vocab_size,
16
+ hidden_embed_size=config.hidden_embed_size,
17
+ n_attn_heads=config.n_attn_heads,
18
+ n_encoder_blocks=config.n_encoder_blocks,
19
+ padding_tkn=config.padding_tkn,
20
+ mask_tkn=config.mask_tkn,
21
+ layer_norm_eps=config.layer_norm_eps,
22
+ a_fn=config.a_fn,
23
+ dropout=config.dropout,
24
+ )
25
+
26
+ def forward(self, input_ids=None, x=None, attention_mask=None, **kwargs):
27
+ # Handle both Hugging Face format (input_ids) and original format (x)
28
+ if input_ids is not None:
29
+ x = input_ids
30
+ elif x is None:
31
+ raise ValueError("Either input_ids or x must be provided")
32
+
33
+ # Get the output from the underlying model
34
+ output = self.model(x, attention_mask)
35
+
36
+ # Return as a simple object with last_hidden_state attribute
37
+ class ModelOutput:
38
+ def __init__(self, last_hidden_state):
39
+ self.last_hidden_state = last_hidden_state
40
+
41
+ return ModelOutput(output)
42
+
43
+ @classmethod
44
+ def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
45
+ # Check if we have custom weights
46
+ model_path = pretrained_model_name_or_path
47
+ custom_weights_path = os.path.join(model_path, "model.pt")
48
+
49
+ if os.path.exists(custom_weights_path):
50
+ # Load config
51
+ config = kwargs.get("config")
52
+ if config is None:
53
+ from transformers import AutoConfig
54
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
55
+
56
+ # Create model with only the config argument
57
+ model = cls(config)
58
+
59
+ # Load custom weights
60
+ state_dict = torch.load(custom_weights_path, map_location="cpu", weights_only=True)
61
+ model.model.load_state_dict(state_dict)
62
+
63
+ # Move model to appropriate device (GPU if available, otherwise CPU)
64
+ device = kwargs.get("device", None)
65
+ if device is None:
66
+ device = "cuda" if torch.cuda.is_available() else "cpu"
67
+ model = model.to(device)
68
+
69
+ return model
70
+ else:
71
+ # Fall back to standard Hugging Face loading
72
+ return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
73
+
74
+ def save_pretrained(self, save_directory, **kwargs):
75
+ os.makedirs(save_directory, exist_ok=True)
76
+ # Save custom weights
77
+ torch.save(self.model.state_dict(), f"{save_directory}/model.pt")
78
+ # Save config
79
+ self.config.save_pretrained(save_directory)
80
+ # Call parent method for any additional saving
81
+ super().save_pretrained(save_directory, **kwargs)
ablang2/models/__init__.py ADDED
File without changes
ablang2/models/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (142 Bytes). View file
 
ablang2/models/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (146 Bytes). View file
 
ablang2/models/ablang1/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .tokenizers import ABtokenizer
2
+ from .model import AbLang, AbRep, AbHead
3
+ from .pretrained import pretrained
ablang2/models/ablang1/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (298 Bytes). View file
 
ablang2/models/ablang1/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (310 Bytes). View file
 
ablang2/models/ablang1/__pycache__/embedding.cpython-310.pyc ADDED
Binary file (1.59 kB). View file
 
ablang2/models/ablang1/__pycache__/embedding.cpython-312.pyc ADDED
Binary file (2.66 kB). View file
 
ablang2/models/ablang1/__pycache__/encoderblocks.cpython-310.pyc ADDED
Binary file (5 kB). View file
 
ablang2/models/ablang1/__pycache__/encoderblocks.cpython-312.pyc ADDED
Binary file (7.78 kB). View file
 
ablang2/models/ablang1/__pycache__/extra_fns.cpython-310.pyc ADDED
Binary file (1.07 kB). View file
 
ablang2/models/ablang1/__pycache__/extra_fns.cpython-312.pyc ADDED
Binary file (1.74 kB). View file
 
ablang2/models/ablang1/__pycache__/fairseq_mha.cpython-310.pyc ADDED
Binary file (30.3 kB). View file
 
ablang2/models/ablang1/__pycache__/fairseq_mha.cpython-312.pyc ADDED
Binary file (55 kB). View file
 
ablang2/models/ablang1/__pycache__/model.cpython-310.pyc ADDED
Binary file (3.44 kB). View file
 
ablang2/models/ablang1/__pycache__/model.cpython-312.pyc ADDED
Binary file (6.23 kB). View file
 
ablang2/models/ablang1/__pycache__/pretrained.cpython-310.pyc ADDED
Binary file (11.5 kB). View file
 
ablang2/models/ablang1/__pycache__/pretrained.cpython-312.pyc ADDED
Binary file (19.8 kB). View file
 
ablang2/models/ablang1/__pycache__/tokenizers.cpython-310.pyc ADDED
Binary file (2.61 kB). View file
 
ablang2/models/ablang1/__pycache__/tokenizers.cpython-312.pyc ADDED
Binary file (3.3 kB). View file
 
ablang2/models/ablang1/embedding.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ class AbEmbeddings(torch.nn.Module):
5
+ """
6
+ Residue embedding and Positional embedding
7
+ """
8
+
9
+ def __init__(self, hparams):
10
+ super().__init__()
11
+ self.pad_token_id = hparams.pad_token_id
12
+
13
+ self.AAEmbeddings = torch.nn.Embedding(hparams.vocab_size, hparams.hidden_size, padding_idx=self.pad_token_id)
14
+ self.PositionEmbeddings = torch.nn.Embedding(hparams.max_position_embeddings, hparams.hidden_size, padding_idx=0) # here padding_idx is always 0
15
+
16
+ self.LayerNorm = torch.nn.LayerNorm(hparams.hidden_size, eps=hparams.layer_norm_eps)
17
+ self.Dropout = torch.nn.Dropout(hparams.hidden_dropout_prob)
18
+
19
+ def forward(self, src):
20
+
21
+ inputs_embeds = self.AAEmbeddings(src)
22
+
23
+ position_ids = self.create_position_ids_from_input_ids(src, self.pad_token_id)
24
+ position_embeddings = self.PositionEmbeddings(position_ids)
25
+
26
+ embeddings = inputs_embeds + position_embeddings
27
+
28
+ return self.Dropout(self.LayerNorm(embeddings))
29
+
30
+ def create_position_ids_from_input_ids(self, input_ids, padding_idx):
31
+ """
32
+ Replace non-padding symbols with their position numbers. Padding idx will get position 0, which will be ignored later on.
33
+ """
34
+ mask = input_ids.ne(padding_idx).int()
35
+
36
+ return torch.cumsum(mask, dim=1).long() * mask
ablang2/models/ablang1/encoderblocks.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Tuple
3
+ from dataclasses import dataclass
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ #from fairseq.modules.multihead_attention import MultiheadAttention
8
+ from .fairseq_mha import MultiheadAttention
9
+
10
+ from .extra_fns import ACT2FN
11
+
12
+
13
+ @dataclass
14
+ class AbRepOutput():
15
+ """
16
+ Dataclass used to store AbRep output.
17
+ """
18
+
19
+ last_hidden_states: torch.FloatTensor
20
+ all_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
21
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
22
+
23
+
24
+ class EncoderBlocks(torch.nn.Module):
25
+ """
26
+ Wrapper for multiple EncoderBlocks (or a single).
27
+ """
28
+ def __init__(self, hparams):
29
+ super().__init__()
30
+ self.hparams = hparams
31
+ self.Layers = nn.ModuleList([EncoderBlock(hparams) for _ in range(hparams.num_hidden_layers)])
32
+
33
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False):
34
+
35
+ all_hidden_states = () if output_hidden_states else None
36
+ all_self_attentions = () if output_attentions else None
37
+
38
+ for num_block, a_EncoderBlock in enumerate(self.Layers):
39
+
40
+ hidden_states, attentions = a_EncoderBlock(hidden_states, attention_mask, output_attentions)
41
+ #print(attentions)
42
+
43
+ if output_hidden_states:
44
+ all_hidden_states = all_hidden_states + (hidden_states,) # Takes out each hidden states after each EncoderBlock
45
+
46
+ if output_attentions:
47
+ all_self_attentions = all_self_attentions + (attentions,) # Takes out attention layers for analysis
48
+
49
+ return AbRepOutput(last_hidden_states=hidden_states, all_hidden_states=all_hidden_states, attentions=all_self_attentions)
50
+
51
+
52
+ class EncoderBlock(torch.nn.Module):
53
+ """
54
+ Single EncoderBlock.
55
+
56
+ An EncoderBlock consists of a MultiHeadAttention and a IntermediateLayer.
57
+ """
58
+ def __init__(self, hparams):
59
+ super().__init__()
60
+
61
+ self.MultiHeadAttention = ThirdMultiHeadAttention(hparams)
62
+ self.MHADropout = nn.Dropout(hparams.hidden_dropout_prob)
63
+ self.MHALayerNorm = nn.LayerNorm(hparams.hidden_size, eps=hparams.layer_norm_eps)
64
+
65
+ self.IntermediateLayer = IntermediateLayer(hparams)
66
+
67
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False):
68
+
69
+ MHAoutput, attentions = self.MultiHeadAttention(hidden_states, attention_mask, output_attentions=output_attentions)
70
+
71
+ output = self.MHADropout(MHAoutput)
72
+ output = self.MHALayerNorm(output + hidden_states) # HIDDEN_STATES ARE ADDED FOR RESIDUAL BLOCK EFFECT
73
+
74
+ output = self.IntermediateLayer(output) # INTERMEDIATELAYER HAS RESIDUAL BLOCK EFFECT INTERNALLY
75
+
76
+ #outputs = (layer_output,) + self_attention_outputs[1:] # if output_attentions=False then 1: is empty
77
+
78
+ return output, attentions
79
+
80
+
81
+ class ThirdMultiHeadAttention(torch.nn.Module):
82
+ """
83
+ New MultiHeadAttention which can return the weights of the individual heads.
84
+ """
85
+
86
+ def __init__(self, hparams):
87
+ super().__init__()
88
+
89
+ self.Attention = MultiheadAttention(hparams.hidden_size, hparams.num_attention_heads, dropout=hparams.attention_probs_dropout_prob, self_attention=True)
90
+
91
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False):
92
+
93
+ hidden_states = torch.transpose(hidden_states, 0, 1)
94
+
95
+ # static_kv is only True because there is currently a bug which doesn't return the head weights unaveraged unless its true
96
+ attn_output, attn_weights = self.Attention(hidden_states, hidden_states, hidden_states, key_padding_mask=attention_mask, static_kv=True,
97
+ need_weights=output_attentions, need_head_weights=output_attentions)
98
+
99
+ return torch.transpose(attn_output, 0, 1), attn_weights
100
+
101
+
102
+ class OldMultiHeadAttention(torch.nn.Module):
103
+ """
104
+ MultiHeadAttention contains a Scaled Dot Product Attention and a Linear Layer.
105
+ """
106
+ def __init__(self, config):
107
+ super().__init__()
108
+ self.Attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, config.attention_probs_dropout_prob)
109
+
110
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False):
111
+
112
+ hidden_states = torch.transpose(hidden_states, 0, 1)
113
+ output, attentions = self.Attention(hidden_states, hidden_states, hidden_states, key_padding_mask=attention_mask, need_weights=output_attentions)
114
+
115
+ attention_output = torch.transpose(output, 0, 1)
116
+
117
+ return attention_output, attentions
118
+
119
+
120
+ class IntermediateLayer(nn.Module):
121
+ """
122
+ Contains an expanding layer, while also functioning as a residual block ending with a drop-norm layer
123
+ """
124
+ def __init__(self, config):
125
+ super().__init__()
126
+ self.expand_dense = nn.Linear(config.hidden_size, config.intermediate_size)
127
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
128
+
129
+ self.dense_dense = nn.Linear(config.intermediate_size, config.hidden_size)
130
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
131
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
132
+
133
+ def forward(self, hidden_states):
134
+ output = self.expand_dense(hidden_states)
135
+ output = self.intermediate_act_fn(output)
136
+
137
+ output = self.dense_dense(output)
138
+ output = self.dropout(output)
139
+ output = self.LayerNorm(output + hidden_states)
140
+
141
+ return output
ablang2/models/ablang1/extra_fns.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import math
3
+
4
+
5
+ def gelu_new(x):
6
+ """
7
+ Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
8
+ the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
9
+ """
10
+ return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
11
+
12
+ def gelu_fast(x):
13
+ return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 + 0.044715 * x * x)))
14
+
15
+ def mish(x):
16
+ return x * torch.tanh(torch.nn.functional.softplus(x))
17
+
18
+ ACT2FN = {
19
+ "relu": torch.nn.functional.relu,
20
+ "gelu": torch.nn.functional.gelu,
21
+ "tanh": torch.tanh,
22
+ "gelu_new": gelu_new,
23
+ "gelu_fast": gelu_fast,
24
+ "mish": mish,
25
+ "sigmoid": torch.sigmoid,
26
+ }
ablang2/models/ablang1/fairseq_mha.py ADDED
@@ -0,0 +1,1306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Dict, List, Optional, Tuple
3
+ import uuid
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from torch import Tensor, nn
8
+ from torch.nn import Parameter
9
+
10
+ _xformers_available = False
11
+
12
+ # TODO: move this into xformers?
13
+ # TODO: uint8 input type should just output a bool
14
+ def _mask_for_xformers(mask: Tensor, to_dtype: Optional[torch.dtype] = None):
15
+ """
16
+ call to pytorch multihead accepts three mask types:
17
+ - ByteTensor where non-zero means to mask
18
+ - FloatTensor which is an additive mask
19
+ - BoolTensor where True means to mask
20
+ xFormers currently accepts boolean and additive maks. For boolean masks
21
+ the values have opposite meaning. For a BoolTensor True mean to keep the value.
22
+ """
23
+ float_types = [torch.float, torch.float16]
24
+ # If an input mask is a float it is an additive mask. Otherwise it is either uint8 or bool.
25
+ additive = mask.dtype in float_types
26
+ # If to_dype is not specified, keep same dtype as mask.
27
+ to_dtype = mask.dtype if to_dtype is None else to_dtype
28
+ to_additive = to_dtype in float_types
29
+
30
+ if additive:
31
+ if to_additive:
32
+ return mask.to(to_dtype)
33
+ mask = mask < 0
34
+
35
+ if to_additive:
36
+ # return additive mask
37
+ new_mask = torch.zeros_like(mask, dtype=to_dtype)
38
+ new_mask = new_mask.masked_fill_(mask, -float("inf"))
39
+ return new_mask
40
+
41
+ # In xFormers True is value to keep rather than value to mask
42
+ mask = ~mask.to(torch.bool)
43
+ mask = mask.to(to_dtype)
44
+ return mask
45
+
46
+ class FairseqDecoder(nn.Module):
47
+ """Base class for decoders."""
48
+
49
+ def __init__(self, dictionary):
50
+ super().__init__()
51
+ self.dictionary = dictionary
52
+ self.onnx_trace = False
53
+ self.adaptive_softmax = None
54
+
55
+ def forward(self, prev_output_tokens, encoder_out=None, **kwargs):
56
+ """
57
+ Args:
58
+ prev_output_tokens (LongTensor): shifted output tokens of shape
59
+ `(batch, tgt_len)`, for teacher forcing
60
+ encoder_out (dict, optional): output from the encoder, used for
61
+ encoder-side attention
62
+
63
+ Returns:
64
+ tuple:
65
+ - the decoder's output of shape `(batch, tgt_len, vocab)`
66
+ - a dictionary with any model-specific outputs
67
+ """
68
+ x, extra = self.extract_features(
69
+ prev_output_tokens, encoder_out=encoder_out, **kwargs
70
+ )
71
+ x = self.output_layer(x)
72
+ return x, extra
73
+
74
+ def extract_features(self, prev_output_tokens, encoder_out=None, **kwargs):
75
+ """
76
+ Returns:
77
+ tuple:
78
+ - the decoder's features of shape `(batch, tgt_len, embed_dim)`
79
+ - a dictionary with any model-specific outputs
80
+ """
81
+ raise NotImplementedError
82
+
83
+ def output_layer(self, features, **kwargs):
84
+ """
85
+ Project features to the default output size, e.g., vocabulary size.
86
+
87
+ Args:
88
+ features (Tensor): features returned by *extract_features*.
89
+ """
90
+ raise NotImplementedError
91
+
92
+ def get_normalized_probs(
93
+ self,
94
+ net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
95
+ log_probs: bool,
96
+ sample: Optional[Dict[str, Tensor]] = None,
97
+ ):
98
+ """Get normalized probabilities (or log probs) from a net's output."""
99
+ return self.get_normalized_probs_scriptable(net_output, log_probs, sample)
100
+
101
+ # TorchScript doesn't support super() method so that the scriptable Subclass
102
+ # can't access the base class model in Torchscript.
103
+ # Current workaround is to add a helper function with different name and
104
+ # call the helper function from scriptable Subclass.
105
+ def get_normalized_probs_scriptable(
106
+ self,
107
+ net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
108
+ log_probs: bool,
109
+ sample: Optional[Dict[str, Tensor]] = None,
110
+ ):
111
+ """Get normalized probabilities (or log probs) from a net's output."""
112
+
113
+ if hasattr(self, "adaptive_softmax") and self.adaptive_softmax is not None:
114
+ if sample is not None:
115
+ assert "target" in sample
116
+ target = sample["target"]
117
+ else:
118
+ target = None
119
+ out = self.adaptive_softmax.get_log_prob(net_output[0], target=target)
120
+ return out.exp_() if not log_probs else out
121
+
122
+ logits = net_output[0]
123
+ if log_probs:
124
+ return log_softmax(logits, dim=-1, onnx_trace=self.onnx_trace)
125
+ else:
126
+ return softmax(logits, dim=-1, onnx_trace=self.onnx_trace)
127
+
128
+ def max_positions(self):
129
+ """Maximum input length supported by the decoder."""
130
+ return 1e6 # an arbitrary large number
131
+
132
+ def upgrade_state_dict_named(self, state_dict, name):
133
+ """Upgrade old state dicts to work with newer code."""
134
+ return state_dict
135
+
136
+ def prepare_for_onnx_export_(self):
137
+ self.onnx_trace = True
138
+
139
+
140
+ class FairseqIncrementalState(object):
141
+ def __init__(self, *args, **kwargs):
142
+ super().__init__(*args, **kwargs)
143
+ self.init_incremental_state()
144
+
145
+ def init_incremental_state(self):
146
+ self._incremental_state_id = str(uuid.uuid4())
147
+
148
+ def _get_full_incremental_state_key(self, key: str) -> str:
149
+ return "{}.{}".format(self._incremental_state_id, key)
150
+
151
+ def get_incremental_state(
152
+ self,
153
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
154
+ key: str,
155
+ ) -> Optional[Dict[str, Optional[Tensor]]]:
156
+ """Helper for getting incremental state for an nn.Module."""
157
+ full_key = self._get_full_incremental_state_key(key)
158
+ if incremental_state is None or full_key not in incremental_state:
159
+ return None
160
+ return incremental_state[full_key]
161
+
162
+ def set_incremental_state(
163
+ self,
164
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
165
+ key: str,
166
+ value: Dict[str, Optional[Tensor]],
167
+ ) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]:
168
+ """Helper for setting incremental state for an nn.Module."""
169
+ if incremental_state is not None:
170
+ full_key = self._get_full_incremental_state_key(key)
171
+ incremental_state[full_key] = value
172
+ return incremental_state
173
+
174
+
175
+ def with_incremental_state(cls):
176
+ cls.__bases__ = (FairseqIncrementalState,) + tuple(
177
+ b for b in cls.__bases__ if b != FairseqIncrementalState
178
+ )
179
+ return cls
180
+
181
+
182
+ @with_incremental_state
183
+ class FairseqIncrementalDecoder(FairseqDecoder):
184
+ """Base class for incremental decoders.
185
+
186
+ Incremental decoding is a special mode at inference time where the Model
187
+ only receives a single timestep of input corresponding to the previous
188
+ output token (for teacher forcing) and must produce the next output
189
+ *incrementally*. Thus the model must cache any long-term state that is
190
+ needed about the sequence, e.g., hidden states, convolutional states, etc.
191
+
192
+ Compared to the standard :class:`FairseqDecoder` interface, the incremental
193
+ decoder interface allows :func:`forward` functions to take an extra keyword
194
+ argument (*incremental_state*) that can be used to cache state across
195
+ time-steps.
196
+
197
+ The :class:`FairseqIncrementalDecoder` interface also defines the
198
+ :func:`reorder_incremental_state` method, which is used during beam search
199
+ to select and reorder the incremental state based on the selection of beams.
200
+
201
+ To learn more about how incremental decoding works, refer to `this blog
202
+ <http://www.telesens.co/2019/04/21/understanding-incremental-decoding-in-fairseq/>`_.
203
+ """
204
+
205
+ def __init__(self, dictionary):
206
+ super().__init__(dictionary)
207
+
208
+ def forward(
209
+ self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs
210
+ ):
211
+ """
212
+ Args:
213
+ prev_output_tokens (LongTensor): shifted output tokens of shape
214
+ `(batch, tgt_len)`, for teacher forcing
215
+ encoder_out (dict, optional): output from the encoder, used for
216
+ encoder-side attention
217
+ incremental_state (dict, optional): dictionary used for storing
218
+ state during :ref:`Incremental decoding`
219
+
220
+ Returns:
221
+ tuple:
222
+ - the decoder's output of shape `(batch, tgt_len, vocab)`
223
+ - a dictionary with any model-specific outputs
224
+ """
225
+ raise NotImplementedError
226
+
227
+ def extract_features(
228
+ self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs
229
+ ):
230
+ """
231
+ Returns:
232
+ tuple:
233
+ - the decoder's features of shape `(batch, tgt_len, embed_dim)`
234
+ - a dictionary with any model-specific outputs
235
+ """
236
+ raise NotImplementedError
237
+
238
+ def reorder_incremental_state(
239
+ self,
240
+ incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
241
+ new_order: Tensor,
242
+ ):
243
+ """Reorder incremental state.
244
+
245
+ This will be called when the order of the input has changed from the
246
+ previous time step. A typical use case is beam search, where the input
247
+ order changes between time steps based on the selection of beams.
248
+ """
249
+ pass
250
+
251
+ def reorder_incremental_state_scripting(
252
+ self,
253
+ incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
254
+ new_order: Tensor,
255
+ ):
256
+ """Main entry point for reordering the incremental state.
257
+
258
+ Due to limitations in TorchScript, we call this function in
259
+ :class:`fairseq.sequence_generator.SequenceGenerator` instead of
260
+ calling :func:`reorder_incremental_state` directly.
261
+ """
262
+ for module in self.modules():
263
+ if hasattr(module, "reorder_incremental_state"):
264
+ result = module.reorder_incremental_state(incremental_state, new_order)
265
+ if result is not None:
266
+ incremental_state = result
267
+
268
+ def set_beam_size(self, beam_size):
269
+ """Sets the beam size in the decoder and all children."""
270
+ if getattr(self, "_beam_size", -1) != beam_size:
271
+ seen = set()
272
+
273
+ def apply_set_beam_size(module):
274
+ if (
275
+ module != self
276
+ and hasattr(module, "set_beam_size")
277
+ and module not in seen
278
+ ):
279
+ seen.add(module)
280
+ module.set_beam_size(beam_size)
281
+
282
+ self.apply(apply_set_beam_size)
283
+ self._beam_size = beam_size
284
+
285
+
286
+
287
+
288
+
289
+
290
+ class MultiheadAttention(FairseqIncrementalDecoder):
291
+ """Multi-headed attention.
292
+
293
+ See "Attention Is All You Need" for more details.
294
+ """
295
+
296
+ def __init__(
297
+ self,
298
+ embed_dim,
299
+ num_heads,
300
+ kdim=None,
301
+ vdim=None,
302
+ dropout=0.0,
303
+ bias=True,
304
+ add_bias_kv=False,
305
+ add_zero_attn=False,
306
+ self_attention=False,
307
+ encoder_decoder_attention=False,
308
+ dictionary=None,
309
+ q_noise=0.0,
310
+ qn_block_size=8,
311
+ # TODO: pass in config rather than string.
312
+ # config defined in xformers.components.attention.AttentionConfig
313
+ xformers_att_config: Optional[str] = None,
314
+ xformers_blocksparse_layout: Optional[
315
+ torch.Tensor
316
+ ] = None, # This should be part of the config
317
+ xformers_blocksparse_blocksize: Optional[
318
+ int
319
+ ] = 16, # This should be part of the config
320
+ ):
321
+ super().__init__(dictionary)
322
+
323
+ #xformers_att_config = utils.eval_str_dict(xformers_att_config)
324
+ self.use_xformers = False #xformers_att_config is not None
325
+ if self.use_xformers and not _xformers_available:
326
+ raise ImportError("\n\n Please install xFormers.")
327
+ self.embed_dim = embed_dim
328
+ self.kdim = kdim if kdim is not None else embed_dim
329
+ self.vdim = vdim if vdim is not None else embed_dim
330
+ self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
331
+
332
+ self.num_heads = num_heads
333
+ self.dropout_module = FairseqDropout(
334
+ dropout, module_name=self.__class__.__name__
335
+ )
336
+
337
+ self.head_dim = embed_dim // num_heads
338
+ assert (
339
+ self.head_dim * num_heads == self.embed_dim
340
+ ), "embed_dim must be divisible by num_heads"
341
+ self.scaling = self.head_dim**-0.5
342
+
343
+ self.self_attention = self_attention
344
+ self.encoder_decoder_attention = encoder_decoder_attention
345
+
346
+ assert not self.self_attention or self.qkv_same_dim, (
347
+ "Self-attention requires query, key and " "value to be of the same size"
348
+ )
349
+
350
+ self.k_proj = quant_noise(
351
+ nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size
352
+ )
353
+ self.v_proj = quant_noise(
354
+ nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
355
+ )
356
+ self.q_proj = quant_noise(
357
+ nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
358
+ )
359
+
360
+ self.out_proj = quant_noise(
361
+ nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
362
+ )
363
+
364
+ if add_bias_kv:
365
+ self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
366
+ self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
367
+ else:
368
+ self.bias_k = self.bias_v = None
369
+
370
+ self.add_zero_attn = add_zero_attn
371
+ self.beam_size = 1
372
+ self.reset_parameters()
373
+
374
+ if self.use_xformers:
375
+ xformers_att_config["dropout"] = xformers_att_config.get("dropout", dropout)
376
+ xformers_att_config["num_heads"] = xformers_att_config.get(
377
+ "num_heads", num_heads
378
+ )
379
+
380
+ if xformers_blocksparse_layout is not None:
381
+ # Could be part of a single config passed only once
382
+ xformers_att_config["block_size"] = xformers_blocksparse_blocksize
383
+ xformers_att_config["layout"] = xformers_blocksparse_layout
384
+ xformers_att_config["name"] = "blocksparse"
385
+
386
+ self.attention = build_attention(xformers_att_config)
387
+
388
+ self.onnx_trace = False
389
+ self.skip_embed_dim_check = False
390
+ self.init_incremental_state()
391
+
392
+ def prepare_for_onnx_export_(self):
393
+ self.onnx_trace = True
394
+
395
+ def reset_parameters(self):
396
+ if self.qkv_same_dim:
397
+ # Empirically observed the convergence to be much better with
398
+ # the scaled initialization
399
+ nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
400
+ nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
401
+ nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
402
+ else:
403
+ nn.init.xavier_uniform_(self.k_proj.weight)
404
+ nn.init.xavier_uniform_(self.v_proj.weight)
405
+ nn.init.xavier_uniform_(self.q_proj.weight)
406
+
407
+ nn.init.xavier_uniform_(self.out_proj.weight)
408
+ if self.out_proj.bias is not None:
409
+ nn.init.constant_(self.out_proj.bias, 0.0)
410
+ if self.bias_k is not None:
411
+ nn.init.xavier_normal_(self.bias_k)
412
+ if self.bias_v is not None:
413
+ nn.init.xavier_normal_(self.bias_v)
414
+
415
+ def _get_reserve_head_index(self, num_heads_to_keep: int):
416
+ k_proj_heads_norm = []
417
+ q_proj_heads_norm = []
418
+ v_proj_heads_norm = []
419
+
420
+ for i in range(self.num_heads):
421
+ start_idx = i * self.head_dim
422
+ end_idx = (i + 1) * self.head_dim
423
+ k_proj_heads_norm.append(
424
+ torch.sum(
425
+ torch.abs(
426
+ self.k_proj.weight[
427
+ start_idx:end_idx,
428
+ ]
429
+ )
430
+ ).tolist()
431
+ + torch.sum(torch.abs(self.k_proj.bias[start_idx:end_idx])).tolist()
432
+ )
433
+ q_proj_heads_norm.append(
434
+ torch.sum(
435
+ torch.abs(
436
+ self.q_proj.weight[
437
+ start_idx:end_idx,
438
+ ]
439
+ )
440
+ ).tolist()
441
+ + torch.sum(torch.abs(self.q_proj.bias[start_idx:end_idx])).tolist()
442
+ )
443
+ v_proj_heads_norm.append(
444
+ torch.sum(
445
+ torch.abs(
446
+ self.v_proj.weight[
447
+ start_idx:end_idx,
448
+ ]
449
+ )
450
+ ).tolist()
451
+ + torch.sum(torch.abs(self.v_proj.bias[start_idx:end_idx])).tolist()
452
+ )
453
+
454
+ heads_norm = []
455
+ for i in range(self.num_heads):
456
+ heads_norm.append(
457
+ k_proj_heads_norm[i] + q_proj_heads_norm[i] + v_proj_heads_norm[i]
458
+ )
459
+
460
+ sorted_head_index = sorted(
461
+ range(self.num_heads), key=lambda k: heads_norm[k], reverse=True
462
+ )
463
+ reserve_head_index = []
464
+ for i in range(num_heads_to_keep):
465
+ start = sorted_head_index[i] * self.head_dim
466
+ end = (sorted_head_index[i] + 1) * self.head_dim
467
+ reserve_head_index.append((start, end))
468
+ return reserve_head_index
469
+
470
+ def _adaptive_prune_heads(self, reserve_head_index: List[Tuple[int, int]]):
471
+ new_q_weight = []
472
+ new_q_bias = []
473
+ new_k_weight = []
474
+ new_k_bias = []
475
+ new_v_weight = []
476
+ new_v_bias = []
477
+ new_out_proj_weight = []
478
+
479
+ for ele in reserve_head_index:
480
+ start_idx, end_idx = ele
481
+ new_q_weight.append(
482
+ self.q_proj.weight[
483
+ start_idx:end_idx,
484
+ ]
485
+ )
486
+ new_q_bias.append(self.q_proj.bias[start_idx:end_idx])
487
+
488
+ new_k_weight.append(
489
+ self.k_proj.weight[
490
+ start_idx:end_idx,
491
+ ]
492
+ )
493
+
494
+ new_k_bias.append(self.k_proj.bias[start_idx:end_idx])
495
+
496
+ new_v_weight.append(
497
+ self.v_proj.weight[
498
+ start_idx:end_idx,
499
+ ]
500
+ )
501
+ new_v_bias.append(self.v_proj.bias[start_idx:end_idx])
502
+
503
+ new_out_proj_weight.append(self.out_proj.weight[:, start_idx:end_idx])
504
+
505
+ new_q_weight = torch.cat(new_q_weight).detach()
506
+ new_k_weight = torch.cat(new_k_weight).detach()
507
+ new_v_weight = torch.cat(new_v_weight).detach()
508
+ new_out_proj_weight = torch.cat(new_out_proj_weight, dim=-1).detach()
509
+ new_q_weight.requires_grad = True
510
+ new_k_weight.requires_grad = True
511
+ new_v_weight.requires_grad = True
512
+ new_out_proj_weight.requires_grad = True
513
+
514
+ new_q_bias = torch.cat(new_q_bias).detach()
515
+ new_q_bias.requires_grad = True
516
+
517
+ new_k_bias = torch.cat(new_k_bias).detach()
518
+ new_k_bias.requires_grad = True
519
+
520
+ new_v_bias = torch.cat(new_v_bias).detach()
521
+ new_v_bias.requires_grad = True
522
+
523
+ self.q_proj.weight = torch.nn.Parameter(new_q_weight)
524
+ self.q_proj.bias = torch.nn.Parameter(new_q_bias)
525
+
526
+ self.k_proj.weight = torch.nn.Parameter(new_k_weight)
527
+ self.k_proj.bias = torch.nn.Parameter(new_k_bias)
528
+
529
+ self.v_proj.weight = torch.nn.Parameter(new_v_weight)
530
+ self.v_proj.bias = torch.nn.Parameter(new_v_bias)
531
+
532
+ self.out_proj.weight = torch.nn.Parameter(new_out_proj_weight)
533
+
534
+ self.num_heads = len(reserve_head_index)
535
+ self.embed_dim = self.head_dim * self.num_heads
536
+ self.q_proj.out_features = self.embed_dim
537
+ self.k_proj.out_features = self.embed_dim
538
+ self.v_proj.out_features = self.embed_dim
539
+
540
+ def _set_skip_embed_dim_check(self):
541
+ self.skip_embed_dim_check = True
542
+
543
+ def _pad_masks(
544
+ self,
545
+ key_padding_mask: Optional[Tensor],
546
+ attn_mask: Optional[Tensor],
547
+ ) -> Tuple[Optional[Tensor], Optional[Tensor]]:
548
+ if attn_mask is not None:
549
+ shape = attn_mask.size()[:-1] + torch.Size([1])
550
+ attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(shape)], dim=-1)
551
+ if key_padding_mask is not None:
552
+ shape = key_padding_mask.size()[:-1] + torch.Size([1])
553
+ key_padding_mask = torch.cat(
554
+ [
555
+ key_padding_mask,
556
+ key_padding_mask.new_zeros(shape),
557
+ ],
558
+ dim=-1,
559
+ )
560
+ return key_padding_mask, attn_mask
561
+
562
+ def _add_bias(
563
+ self,
564
+ k: Tensor,
565
+ v: Tensor,
566
+ key_padding_mask: Optional[Tensor],
567
+ attn_mask: Optional[Tensor],
568
+ bsz: int,
569
+ ) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
570
+ assert self.bias_k is not None
571
+ assert self.bias_v is not None
572
+ k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
573
+ v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
574
+ key_padding_mask, attn_mask = self._pad_masks(
575
+ key_padding_mask=key_padding_mask, attn_mask=attn_mask
576
+ )
577
+ return k, v, key_padding_mask, attn_mask
578
+
579
+ def _append_zero_attn(
580
+ self,
581
+ k: Tensor,
582
+ v: Tensor,
583
+ key_padding_mask: Optional[Tensor],
584
+ attn_mask: Optional[Tensor],
585
+ ) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
586
+ zero_attn_shape = k.size()[:-2] + torch.Size([1]) + k.size()[-1:]
587
+ k = torch.cat(
588
+ [k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=-2
589
+ )
590
+ v = torch.cat(
591
+ [v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=-2
592
+ )
593
+ key_padding_mask, attn_mask = self._pad_masks(
594
+ key_padding_mask=key_padding_mask, attn_mask=attn_mask
595
+ )
596
+ return k, v, key_padding_mask, attn_mask
597
+
598
+ def _xformers_attn_forward(
599
+ self,
600
+ query,
601
+ key: Optional[Tensor],
602
+ value: Optional[Tensor],
603
+ key_padding_mask: Optional[Tensor] = None,
604
+ need_weights: bool = True,
605
+ attn_mask: Optional[Tensor] = None,
606
+ ) -> Tuple[Tensor, Optional[Tensor]]:
607
+
608
+ tgt_len, bsz, embed_dim = query.size()
609
+
610
+ if key_padding_mask is not None:
611
+ assert key_padding_mask.size(0) == bsz
612
+ assert key_padding_mask.size(1) == tgt_len
613
+
614
+ if self.self_attention:
615
+ key = query
616
+ value = query
617
+ elif self.encoder_decoder_attention:
618
+ value = key
619
+
620
+ q = self.q_proj(query)
621
+ k = self.k_proj(key)
622
+ v = self.v_proj(value)
623
+
624
+ if self.bias_k is not None:
625
+ assert self.bias_v is not None
626
+ k, v, attn_mask, key_padding_mask = self._add_bias(
627
+ k, v, attn_mask, key_padding_mask, bsz
628
+ )
629
+
630
+ def fold_heads(x):
631
+ return (
632
+ x.contiguous()
633
+ .view(-1, bsz * self.num_heads, self.head_dim)
634
+ .transpose(0, 1)
635
+ )
636
+
637
+ def split_heads(x):
638
+ return (
639
+ x.contiguous()
640
+ .view(-1, bsz, self.num_heads, self.head_dim)
641
+ .transpose(0, 1)
642
+ .transpose(1, 2)
643
+ )
644
+
645
+ massage = split_heads if self.attention.requires_head_dimension else fold_heads
646
+ q = massage(q)
647
+ if k is not None:
648
+ k = massage(k)
649
+ if v is not None:
650
+ v = massage(v)
651
+
652
+ if self.add_zero_attn:
653
+ k, v, key_padding_mask, attn_mask = self._append_zero_attn(
654
+ k=k, v=v, key_padding_mask=key_padding_mask, attn_mask=attn_mask
655
+ )
656
+
657
+ kwargs = {}
658
+
659
+ if attn_mask is not None and self.attention.supports_attention_mask:
660
+ attn_mask = _mask_for_xformers(attn_mask, to_dtype=q.dtype)
661
+ kwargs["att_mask"] = attn_mask
662
+
663
+ if key_padding_mask is not None:
664
+ key_padding_mask = _mask_for_xformers(key_padding_mask, to_dtype=torch.bool)
665
+ if not self.attention.requires_separate_masks:
666
+ attn_mask = maybe_merge_masks(
667
+ attn_mask,
668
+ key_padding_mask,
669
+ batch_size=bsz,
670
+ src_len=k.size(-2),
671
+ tgt_len=q.size(-2),
672
+ num_heads=self.num_heads,
673
+ )
674
+ key_padding_mask = None
675
+ kwargs["att_mask"] = attn_mask
676
+ if self.attention.supports_key_padding_mask:
677
+ kwargs["key_padding_mask"] = key_padding_mask
678
+
679
+ y = self.attention(q, k, v, **kwargs)
680
+
681
+ y = (
682
+ y.view(bsz, self.num_heads, tgt_len, self.head_dim)
683
+ .transpose(1, 2)
684
+ .flatten(start_dim=2, end_dim=3)
685
+ .transpose(0, 1)
686
+ )
687
+ assert list(y.size()) == [tgt_len, bsz, embed_dim]
688
+
689
+ # Dropout not needed because already applied in attention.
690
+ # It is applied to the attention weights before matmul with v.
691
+ y = self.out_proj(y)
692
+
693
+ # TODO: support returning attention weights if needed.
694
+ return y, None
695
+
696
+ def forward(
697
+ self,
698
+ query: Tensor,
699
+ key: Optional[Tensor],
700
+ value: Optional[Tensor],
701
+ key_padding_mask: Optional[Tensor] = None,
702
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
703
+ need_weights: bool = True,
704
+ static_kv: bool = False,
705
+ attn_mask: Optional[Tensor] = None,
706
+ before_softmax: bool = False,
707
+ need_head_weights: bool = False,
708
+ ) -> Tuple[Tensor, Optional[Tensor]]:
709
+ """Input shape: Time x Batch x Channel
710
+
711
+ Args:
712
+ key_padding_mask (ByteTensor, optional): mask to exclude
713
+ keys that are pads, of shape `(batch, src_len)`, where
714
+ padding elements are indicated by 1s.
715
+ need_weights (bool, optional): return the attention weights,
716
+ averaged over heads (default: False).
717
+ attn_mask (ByteTensor, optional): typically used to
718
+ implement causal attention, where the mask prevents the
719
+ attention from looking forward in time (default: None).
720
+ before_softmax (bool, optional): return the raw attention
721
+ weights and values before the attention softmax.
722
+ need_head_weights (bool, optional): return the attention
723
+ weights for each head. Implies *need_weights*. Default:
724
+ return the average attention weights over all heads.
725
+ """
726
+ if need_head_weights:
727
+ need_weights = True
728
+
729
+ is_tpu = query.device.type == "xla"
730
+
731
+ tgt_len, bsz, embed_dim = query.size()
732
+ src_len = tgt_len
733
+ if not self.skip_embed_dim_check:
734
+ assert (
735
+ embed_dim == self.embed_dim
736
+ ), f"query dim {embed_dim} != {self.embed_dim}"
737
+ assert list(query.size()) == [tgt_len, bsz, embed_dim]
738
+ if key is not None:
739
+ src_len, key_bsz, _ = key.size()
740
+ if not torch.jit.is_scripting():
741
+ assert value is not None
742
+ assert src_len, key_bsz == value.shape[:2]
743
+
744
+ if (
745
+ not self.onnx_trace
746
+ and not is_tpu # don't use PyTorch version on TPUs
747
+ and incremental_state is None
748
+ and not static_kv
749
+ # A workaround for quantization to work. Otherwise JIT compilation
750
+ # treats bias in linear module as method.
751
+ and not torch.jit.is_scripting()
752
+ # The Multihead attention implemented in pytorch forces strong dimension check
753
+ # for input embedding dimention and K,Q,V projection dimension.
754
+ # Since pruning will break the dimension check and it is not easy to modify the pytorch API,
755
+ # it is preferred to bypass the pytorch MHA when we need to skip embed_dim_check
756
+ and not self.skip_embed_dim_check
757
+ ):
758
+ assert key is not None and value is not None
759
+
760
+ if self.use_xformers:
761
+ return self._xformers_attn_forward(
762
+ query, key, value, key_padding_mask, need_weights, attn_mask
763
+ )
764
+
765
+ else:
766
+ return F.multi_head_attention_forward(
767
+ query,
768
+ key,
769
+ value,
770
+ self.embed_dim,
771
+ self.num_heads,
772
+ torch.empty([0]),
773
+ torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
774
+ self.bias_k,
775
+ self.bias_v,
776
+ self.add_zero_attn,
777
+ self.dropout_module.p,
778
+ self.out_proj.weight,
779
+ self.out_proj.bias,
780
+ self.training or self.dropout_module.apply_during_inference,
781
+ key_padding_mask.bool() if key_padding_mask is not None else None,
782
+ need_weights,
783
+ attn_mask,
784
+ use_separate_proj_weight=True,
785
+ q_proj_weight=self.q_proj.weight,
786
+ k_proj_weight=self.k_proj.weight,
787
+ v_proj_weight=self.v_proj.weight,
788
+ )
789
+
790
+ if incremental_state is not None:
791
+ saved_state = self._get_input_buffer(incremental_state)
792
+ if saved_state is not None and "prev_key" in saved_state:
793
+ # previous time steps are cached - no need to recompute
794
+ # key and value if they are static
795
+ if static_kv:
796
+ assert self.encoder_decoder_attention and not self.self_attention
797
+ key = value = None
798
+ else:
799
+ saved_state = None
800
+
801
+ if self.self_attention:
802
+ q = self.q_proj(query)
803
+ k = self.k_proj(query)
804
+ v = self.v_proj(query)
805
+ elif self.encoder_decoder_attention:
806
+ # encoder-decoder attention
807
+ q = self.q_proj(query)
808
+ if key is None:
809
+ assert value is None
810
+ k = v = None
811
+ else:
812
+ if self.beam_size > 1 and bsz == key.size(1):
813
+ # key is [T, bsz*beam_size, C], reduce to [T, bsz, C]
814
+ key = key.view(key.size(0), -1, self.beam_size, key.size(2))[
815
+ :, :, 0, :
816
+ ]
817
+ if key_padding_mask is not None:
818
+ key_padding_mask = key_padding_mask.view(
819
+ -1, self.beam_size, key_padding_mask.size(1)
820
+ )[:, 0, :]
821
+ k = self.k_proj(key)
822
+ v = self.v_proj(key)
823
+
824
+ else:
825
+ assert key is not None and value is not None
826
+ q = self.q_proj(query)
827
+ k = self.k_proj(key)
828
+ v = self.v_proj(value)
829
+ q *= self.scaling
830
+
831
+ if self.bias_k is not None:
832
+ assert self.bias_v is not None
833
+ k, v, attn_mask, key_padding_mask = self._add_bias(
834
+ k, v, attn_mask, key_padding_mask, bsz
835
+ )
836
+
837
+ q = (
838
+ q.contiguous()
839
+ .view(tgt_len, bsz * self.num_heads, self.head_dim)
840
+ .transpose(0, 1)
841
+ )
842
+ kv_bsz = bsz # need default value for scripting
843
+ if k is not None:
844
+ kv_bsz = k.size(1)
845
+ k = (
846
+ k.contiguous()
847
+ .view(-1, kv_bsz * self.num_heads, self.head_dim)
848
+ .transpose(0, 1)
849
+ )
850
+ if v is not None:
851
+ v = (
852
+ v.contiguous()
853
+ .view(-1, kv_bsz * self.num_heads, self.head_dim)
854
+ .transpose(0, 1)
855
+ )
856
+
857
+ if saved_state is not None:
858
+ # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
859
+ if "prev_key" in saved_state:
860
+ _prev_key = saved_state["prev_key"]
861
+ assert _prev_key is not None
862
+ kv_bsz = _prev_key.size(0)
863
+ prev_key = _prev_key.view(kv_bsz * self.num_heads, -1, self.head_dim)
864
+ if static_kv:
865
+ k = prev_key
866
+ else:
867
+ assert k is not None
868
+ k = torch.cat([prev_key, k], dim=1)
869
+ src_len = k.size(1)
870
+ if "prev_value" in saved_state:
871
+ _prev_value = saved_state["prev_value"]
872
+ assert _prev_value is not None
873
+ assert kv_bsz == _prev_value.size(0)
874
+ prev_value = _prev_value.view(
875
+ kv_bsz * self.num_heads, -1, self.head_dim
876
+ )
877
+ if static_kv:
878
+ v = prev_value
879
+ else:
880
+ assert v is not None
881
+ v = torch.cat([prev_value, v], dim=1)
882
+ prev_key_padding_mask: Optional[Tensor] = None
883
+ if "prev_key_padding_mask" in saved_state:
884
+ prev_key_padding_mask = saved_state["prev_key_padding_mask"]
885
+ assert k is not None and v is not None
886
+ key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
887
+ key_padding_mask=key_padding_mask,
888
+ prev_key_padding_mask=prev_key_padding_mask,
889
+ batch_size=kv_bsz,
890
+ src_len=k.size(1),
891
+ static_kv=static_kv,
892
+ )
893
+
894
+ saved_state["prev_key"] = k.view(kv_bsz, self.num_heads, -1, self.head_dim)
895
+ saved_state["prev_value"] = v.view(
896
+ kv_bsz, self.num_heads, -1, self.head_dim
897
+ )
898
+ saved_state["prev_key_padding_mask"] = key_padding_mask
899
+ # In this branch incremental_state is never None
900
+ assert incremental_state is not None
901
+ incremental_state = self._set_input_buffer(incremental_state, saved_state)
902
+ assert k is not None
903
+ assert k.size(1) == src_len
904
+
905
+ # This is part of a workaround to get around fork/join parallelism
906
+ # not supporting Optional types.
907
+ if key_padding_mask is not None and key_padding_mask.dim() == 0:
908
+ key_padding_mask = None
909
+
910
+ if key_padding_mask is not None:
911
+ assert key_padding_mask.size(0) == kv_bsz
912
+ assert key_padding_mask.size(1) == src_len
913
+
914
+ if self.add_zero_attn:
915
+ assert v is not None
916
+ src_len += 1
917
+ k, v, key_padding_mask, attn_mask = self._append_zero_attn(
918
+ k=k, v=v, key_padding_mask=key_padding_mask, attn_mask=attn_mask
919
+ )
920
+
921
+ if self.encoder_decoder_attention and bsz != kv_bsz:
922
+ attn_weights = torch.einsum(
923
+ "bxhtd,bhsd->bxhts",
924
+ q.view((kv_bsz, -1, self.num_heads) + q.size()[1:]),
925
+ k.view((kv_bsz, self.num_heads) + k.size()[1:]),
926
+ )
927
+ attn_weights = attn_weights.reshape((-1,) + attn_weights.size()[-2:])
928
+ else:
929
+ attn_weights = torch.bmm(q, k.transpose(1, 2))
930
+ attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
931
+
932
+ assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
933
+
934
+ if attn_mask is not None:
935
+ attn_mask = attn_mask.unsqueeze(0)
936
+ if self.onnx_trace:
937
+ attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
938
+ attn_weights += attn_mask
939
+
940
+ if key_padding_mask is not None:
941
+ # don't attend to padding symbols
942
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
943
+ if not is_tpu:
944
+ attn_weights = attn_weights.view(
945
+ kv_bsz, -1, self.num_heads, tgt_len, src_len
946
+ )
947
+ attn_weights = attn_weights.masked_fill(
948
+ key_padding_mask.unsqueeze(1)
949
+ .unsqueeze(2)
950
+ .unsqueeze(3)
951
+ .to(torch.bool),
952
+ float("-inf"),
953
+ )
954
+ else:
955
+ attn_weights = attn_weights.transpose(0, 2)
956
+ attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
957
+ attn_weights = attn_weights.transpose(0, 2)
958
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
959
+
960
+ if before_softmax:
961
+ return attn_weights, v
962
+
963
+ attn_weights_float = softmax(
964
+ attn_weights, dim=-1, onnx_trace=self.onnx_trace
965
+ )
966
+ attn_weights = attn_weights_float.type_as(attn_weights)
967
+ attn_probs = self.dropout_module(attn_weights)
968
+
969
+ assert v is not None
970
+ attn: Optional[Tensor] = None
971
+ if self.encoder_decoder_attention and bsz != kv_bsz:
972
+ attn = torch.einsum(
973
+ "bxhts,bhsd->bxhtd",
974
+ attn_probs.view(
975
+ (
976
+ kv_bsz,
977
+ -1,
978
+ self.num_heads,
979
+ )
980
+ + attn_probs.size()[1:]
981
+ ),
982
+ v.view(
983
+ (
984
+ kv_bsz,
985
+ self.num_heads,
986
+ )
987
+ + v.size()[1:]
988
+ ),
989
+ )
990
+ attn = attn.reshape((-1,) + attn.size()[-2:])
991
+ else:
992
+ attn = torch.bmm(attn_probs, v)
993
+ assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
994
+ if self.onnx_trace and attn.size(1) == 1:
995
+ # when ONNX tracing a single decoder step (sequence length == 1)
996
+ # the transpose is a no-op copy before view, thus unnecessary
997
+ attn = attn.contiguous().view(tgt_len, bsz, self.embed_dim)
998
+ else:
999
+ attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim)
1000
+ attn = self.out_proj(attn)
1001
+ attn_weights: Optional[Tensor] = None
1002
+ if need_weights:
1003
+ attn_weights = attn_weights_float.view(
1004
+ bsz, self.num_heads, tgt_len, src_len
1005
+ ).transpose(1, 0)
1006
+ if not need_head_weights:
1007
+ # average attention weights over heads
1008
+ attn_weights = attn_weights.mean(dim=0)
1009
+
1010
+ return attn, attn_weights
1011
+
1012
+ @staticmethod
1013
+ def _append_prev_key_padding_mask(
1014
+ key_padding_mask: Optional[Tensor],
1015
+ prev_key_padding_mask: Optional[Tensor],
1016
+ batch_size: int,
1017
+ src_len: int,
1018
+ static_kv: bool,
1019
+ ) -> Optional[Tensor]:
1020
+ # saved key padding masks have shape (bsz, seq_len)
1021
+ if prev_key_padding_mask is not None and static_kv:
1022
+ new_key_padding_mask = prev_key_padding_mask
1023
+ elif prev_key_padding_mask is not None and key_padding_mask is not None:
1024
+ new_key_padding_mask = torch.cat(
1025
+ [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
1026
+ )
1027
+ # During incremental decoding, as the padding token enters and
1028
+ # leaves the frame, there will be a time when prev or current
1029
+ # is None
1030
+ elif prev_key_padding_mask is not None:
1031
+ if src_len > prev_key_padding_mask.size(1):
1032
+ filler = torch.zeros(
1033
+ (batch_size, src_len - prev_key_padding_mask.size(1)),
1034
+ device=prev_key_padding_mask.device,
1035
+ )
1036
+ new_key_padding_mask = torch.cat(
1037
+ [prev_key_padding_mask.float(), filler.float()], dim=1
1038
+ )
1039
+ else:
1040
+ new_key_padding_mask = prev_key_padding_mask.float()
1041
+ elif key_padding_mask is not None:
1042
+ if src_len > key_padding_mask.size(1):
1043
+ filler = torch.zeros(
1044
+ (batch_size, src_len - key_padding_mask.size(1)),
1045
+ device=key_padding_mask.device,
1046
+ )
1047
+ new_key_padding_mask = torch.cat(
1048
+ [filler.float(), key_padding_mask.float()], dim=1
1049
+ )
1050
+ else:
1051
+ new_key_padding_mask = key_padding_mask.float()
1052
+ else:
1053
+ new_key_padding_mask = prev_key_padding_mask
1054
+ return new_key_padding_mask
1055
+
1056
+ @torch.jit.export
1057
+ def reorder_incremental_state(
1058
+ self,
1059
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
1060
+ new_order: Tensor,
1061
+ ):
1062
+ """Reorder buffered internal state (for incremental generation)."""
1063
+ input_buffer = self._get_input_buffer(incremental_state)
1064
+ if input_buffer is not None:
1065
+ for k in input_buffer.keys():
1066
+ input_buffer_k = input_buffer[k]
1067
+ if input_buffer_k is not None:
1068
+ if self.encoder_decoder_attention:
1069
+ if input_buffer_k.size(0) * self.beam_size == new_order.size(0):
1070
+ return incremental_state
1071
+ elif self.beam_size > 1:
1072
+ input_buffer[k] = input_buffer_k.index_select(
1073
+ 0,
1074
+ new_order.reshape(-1, self.beam_size)[:, 0]
1075
+ // self.beam_size,
1076
+ )
1077
+ else:
1078
+ input_buffer[k] = input_buffer_k.index_select(0, new_order)
1079
+ else:
1080
+ input_buffer[k] = input_buffer_k.index_select(0, new_order)
1081
+ incremental_state = self._set_input_buffer(incremental_state, input_buffer)
1082
+ return incremental_state
1083
+
1084
+ def set_beam_size(self, beam_size):
1085
+ """Used for effiecient beamable enc-dec attention"""
1086
+ self.beam_size = beam_size
1087
+
1088
+ def _get_input_buffer(
1089
+ self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
1090
+ ) -> Dict[str, Optional[Tensor]]:
1091
+ result = self.get_incremental_state(incremental_state, "attn_state")
1092
+ if result is not None:
1093
+ return result
1094
+ else:
1095
+ empty_result: Dict[str, Optional[Tensor]] = {}
1096
+ return empty_result
1097
+
1098
+ def _set_input_buffer(
1099
+ self,
1100
+ incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
1101
+ buffer: Dict[str, Optional[Tensor]],
1102
+ ):
1103
+ return self.set_incremental_state(incremental_state, "attn_state", buffer)
1104
+
1105
+ def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
1106
+ return attn_weights
1107
+
1108
+ def upgrade_state_dict_named(self, state_dict, name):
1109
+ prefix = name + "." if name != "" else ""
1110
+ items_to_add = {}
1111
+ keys_to_remove = []
1112
+ for k in state_dict.keys():
1113
+ if k.endswith(prefix + "in_proj_weight"):
1114
+ # in_proj_weight used to be q + k + v with same dimensions
1115
+ dim = int(state_dict[k].shape[0] / 3)
1116
+ items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
1117
+ items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
1118
+ items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
1119
+
1120
+ keys_to_remove.append(k)
1121
+
1122
+ k_bias = prefix + "in_proj_bias"
1123
+ if k_bias in state_dict.keys():
1124
+ dim = int(state_dict[k].shape[0] / 3)
1125
+ items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
1126
+ items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
1127
+ dim : 2 * dim
1128
+ ]
1129
+ items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
1130
+
1131
+ keys_to_remove.append(prefix + "in_proj_bias")
1132
+
1133
+ for k in keys_to_remove:
1134
+ del state_dict[k]
1135
+
1136
+ for key, value in items_to_add.items():
1137
+ state_dict[key] = value
1138
+
1139
+
1140
+
1141
+
1142
+
1143
+
1144
+
1145
+
1146
+
1147
+
1148
+
1149
+ class FairseqDropout(nn.Module):
1150
+ def __init__(self, p, module_name=None):
1151
+ super().__init__()
1152
+ self.p = p
1153
+ self.module_name = module_name
1154
+ self.apply_during_inference = False
1155
+
1156
+ def forward(self, x, inplace: bool = False):
1157
+ if self.p > 0 and (self.training or self.apply_during_inference):
1158
+ return F.dropout(x, p=self.p, training=True, inplace=inplace)
1159
+ else:
1160
+ return x
1161
+
1162
+ def make_generation_fast_(
1163
+ self,
1164
+ name: str,
1165
+ retain_dropout: bool = False,
1166
+ retain_dropout_modules: Optional[List[str]] = None,
1167
+ **kwargs
1168
+ ):
1169
+ if retain_dropout:
1170
+ if retain_dropout_modules is not None and self.module_name is None:
1171
+ logger.warning(
1172
+ "Cannot enable dropout during inference for module {} "
1173
+ "because module_name was not set".format(name)
1174
+ )
1175
+ elif (
1176
+ retain_dropout_modules is None # if None, apply to all modules
1177
+ or self.module_name in retain_dropout_modules
1178
+ ):
1179
+ logger.info(
1180
+ "Enabling dropout during inference for module: {}".format(name)
1181
+ )
1182
+ self.apply_during_inference = True
1183
+ else:
1184
+ logger.info("Disabling dropout for module: {}".format(name))
1185
+
1186
+
1187
+ def quant_noise(module, p, block_size):
1188
+ """
1189
+ Wraps modules and applies quantization noise to the weights for
1190
+ subsequent quantization with Iterative Product Quantization as
1191
+ described in "Training with Quantization Noise for Extreme Model Compression"
1192
+
1193
+ Args:
1194
+ - module: nn.Module
1195
+ - p: amount of Quantization Noise
1196
+ - block_size: size of the blocks for subsequent quantization with iPQ
1197
+
1198
+ Remarks:
1199
+ - Module weights must have the right sizes wrt the block size
1200
+ - Only Linear, Embedding and Conv2d modules are supported for the moment
1201
+ - For more detail on how to quantize by blocks with convolutional weights,
1202
+ see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"
1203
+ - We implement the simplest form of noise here as stated in the paper
1204
+ which consists in randomly dropping blocks
1205
+ """
1206
+
1207
+ # if no quantization noise, don't register hook
1208
+ if p <= 0:
1209
+ return module
1210
+
1211
+ # supported modules
1212
+ assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))
1213
+
1214
+ # test whether module.weight has the right sizes wrt block_size
1215
+ is_conv = module.weight.ndim == 4
1216
+
1217
+ # 2D matrix
1218
+ if not is_conv:
1219
+ assert (
1220
+ module.weight.size(1) % block_size == 0
1221
+ ), "Input features must be a multiple of block sizes"
1222
+
1223
+ # 4D matrix
1224
+ else:
1225
+ # 1x1 convolutions
1226
+ if module.kernel_size == (1, 1):
1227
+ assert (
1228
+ module.in_channels % block_size == 0
1229
+ ), "Input channels must be a multiple of block sizes"
1230
+ # regular convolutions
1231
+ else:
1232
+ k = module.kernel_size[0] * module.kernel_size[1]
1233
+ assert k % block_size == 0, "Kernel size must be a multiple of block size"
1234
+
1235
+ def _forward_pre_hook(mod, input):
1236
+ # no noise for evaluation
1237
+ if mod.training:
1238
+ if not is_conv:
1239
+ # gather weight and sizes
1240
+ weight = mod.weight
1241
+ in_features = weight.size(1)
1242
+ out_features = weight.size(0)
1243
+
1244
+ # split weight matrix into blocks and randomly drop selected blocks
1245
+ mask = torch.zeros(
1246
+ in_features // block_size * out_features, device=weight.device
1247
+ )
1248
+ mask.bernoulli_(p)
1249
+ mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
1250
+
1251
+ else:
1252
+ # gather weight and sizes
1253
+ weight = mod.weight
1254
+ in_channels = mod.in_channels
1255
+ out_channels = mod.out_channels
1256
+
1257
+ # split weight matrix into blocks and randomly drop selected blocks
1258
+ if mod.kernel_size == (1, 1):
1259
+ mask = torch.zeros(
1260
+ int(in_channels // block_size * out_channels),
1261
+ device=weight.device,
1262
+ )
1263
+ mask.bernoulli_(p)
1264
+ mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
1265
+ else:
1266
+ mask = torch.zeros(
1267
+ weight.size(0), weight.size(1), device=weight.device
1268
+ )
1269
+ mask.bernoulli_(p)
1270
+ mask = (
1271
+ mask.unsqueeze(2)
1272
+ .unsqueeze(3)
1273
+ .repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
1274
+ )
1275
+
1276
+ # scale weights and apply mask
1277
+ mask = mask.to(
1278
+ torch.bool
1279
+ ) # x.bool() is not currently supported in TorchScript
1280
+ s = 1 / (1 - p)
1281
+ mod.weight.data = s * weight.masked_fill(mask, 0)
1282
+
1283
+ module.register_forward_pre_hook(_forward_pre_hook)
1284
+ return module
1285
+
1286
+
1287
+
1288
+
1289
+
1290
+
1291
+
1292
+
1293
+
1294
+
1295
+
1296
+ def softmax(x, dim: int, onnx_trace: bool = False):
1297
+ if onnx_trace:
1298
+ return F.softmax(x.float(), dim=dim)
1299
+ else:
1300
+ return F.softmax(x, dim=dim, dtype=torch.float32)
1301
+
1302
+ def log_softmax(x, dim: int, onnx_trace: bool = False):
1303
+ if onnx_trace:
1304
+ return F.log_softmax(x.float(), dim=dim)
1305
+ else:
1306
+ return F.log_softmax(x, dim=dim, dtype=torch.float32)
ablang2/models/ablang1/model.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from .extra_fns import ACT2FN
4
+ from .encoderblocks import EncoderBlocks
5
+ from .embedding import AbEmbeddings
6
+
7
+
8
+ class AbLang(torch.nn.Module):
9
+ """
10
+ Pretraining model includes Abrep and the head model used for training.
11
+ """
12
+ def __init__(self, hparams):
13
+ super().__init__()
14
+ self.hparams = hparams
15
+
16
+ self.AbRep = AbRep(self.hparams)
17
+ self.AbHead = AbHead(self.hparams)
18
+
19
+ def forward(self, x, attention_mask=None):
20
+
21
+ representations = self.AbRep(x, attention_mask)
22
+
23
+ output = self.AbHead(representations.last_hidden_states)
24
+
25
+ return output
26
+
27
+ def get_aa_embeddings(self):
28
+ "This function is used to extract the trained aa_embeddings."
29
+ return self.AbRep.AbEmbeddings.aa_embeddings#().weight.detach()
30
+
31
+
32
+ class AbRep(torch.nn.Module):
33
+ """
34
+ This is the AbRep model.
35
+ """
36
+ def __init__(self, hparams):
37
+ super().__init__()
38
+ self.hparams = hparams
39
+
40
+ self.AbEmbeddings = AbEmbeddings(self.hparams)
41
+ self.EncoderBlocks = EncoderBlocks(self.hparams)
42
+
43
+ self.init_weights()
44
+
45
+ def forward(self, src, attention_mask=None, output_attentions=False):
46
+
47
+ attention_mask = torch.zeros(*src.shape, device=src.device).masked_fill(src == self.hparams.pad_token_id, 1)
48
+
49
+ src = self.AbEmbeddings(src)
50
+
51
+ output = self.EncoderBlocks(src, attention_mask=attention_mask, output_attentions=output_attentions)
52
+
53
+ return output
54
+
55
+ def _init_weights(self, module):
56
+ """ Initialize the weights """
57
+ if isinstance(module, (torch.nn.Linear, torch.nn.Embedding)):
58
+ module.weight.data.normal_(mean=0.0, std=self.hparams.initializer_range)
59
+ elif isinstance(module, torch.nn.LayerNorm):
60
+ module.bias.data.zero_()
61
+ module.weight.data.fill_(1.0)
62
+ if isinstance(module, torch.nn.Linear) and module.bias is not None:
63
+ module.bias.data.zero_()
64
+
65
+ def init_weights(self):
66
+ """
67
+ Initializes and prunes weights if needed.
68
+ """
69
+ # Initialize weights
70
+ self.apply(self._init_weights)
71
+
72
+
73
+ class AbHead(torch.nn.Module):
74
+ """
75
+ Head for masked sequence prediction.
76
+ """
77
+
78
+ def __init__(self, hparams):
79
+ super().__init__()
80
+ self.hparams = hparams
81
+ self.dense = torch.nn.Linear(self.hparams.hidden_size, self.hparams.hidden_size)
82
+ self.layer_norm = torch.nn.LayerNorm(self.hparams.hidden_size, eps=self.hparams.layer_norm_eps)
83
+
84
+ self.decoder = torch.nn.Linear(self.hparams.hidden_size, self.hparams.vocab_size, bias=False)
85
+ self.bias = torch.nn.Parameter(torch.zeros(self.hparams.vocab_size))
86
+
87
+ self.activation = ACT2FN[self.hparams.hidden_act]
88
+
89
+ ## self.init_weights() - need to have a function doing this
90
+
91
+ self.decoder.bias = self.bias # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
92
+
93
+ def forward(self, features, **kwargs):
94
+ x = self.dense(features)
95
+
96
+ x = self.activation(x)
97
+ x = self.layer_norm(x)
98
+
99
+ # project back to size of vocabulary with bias
100
+ x = self.decoder(x)
101
+
102
+ return x
ablang2/models/ablang1/pretrained.py ADDED
@@ -0,0 +1,358 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, json, argparse, string, subprocess, re
2
+ from dataclasses import dataclass
3
+
4
+ from numba import jit
5
+ from numba.typed import Dict, List
6
+ from numba.types import unicode_type, DictType
7
+
8
+ import numpy as np
9
+ import torch
10
+ import requests
11
+
12
+ from . import tokenizers, model
13
+
14
+
15
+ class pretrained:
16
+ """
17
+ Initializes AbLang for heavy or light chains.
18
+ """
19
+
20
+ def __init__(self, chain="heavy", model_folder="download", random_init=False, ncpu=7, device='cpu'):
21
+ super().__init__()
22
+
23
+ self.used_device = torch.device(device)
24
+
25
+ if model_folder == "download":
26
+ # Download model and save to specific place - if already downloaded do not download again
27
+ model_folder = os.path.join(os.path.dirname(__file__), "model-weights-{}".format(chain))
28
+ os.makedirs(model_folder, exist_ok = True)
29
+
30
+ if not os.path.isfile(os.path.join(model_folder, "amodel.pt")):
31
+ print("Downloading model ...")
32
+
33
+ url = "https://opig.stats.ox.ac.uk/data/downloads/ablang-{}.tar.gz".format(chain)
34
+ tmp_file = os.path.join(model_folder, "tmp.tar.gz")
35
+
36
+ with open(tmp_file,'wb') as f: f.write(requests.get(url).content)
37
+
38
+ subprocess.run(["tar", "-zxvf", tmp_file, "-C", model_folder], check = True)
39
+
40
+ os.remove(tmp_file)
41
+
42
+ self.hparams_file = os.path.join(model_folder, 'hparams.json')
43
+ self.model_file = os.path.join(model_folder, 'amodel.pt')
44
+
45
+ with open(self.hparams_file, 'r', encoding='utf-8') as f:
46
+ self.hparams = argparse.Namespace(**json.load(f))
47
+
48
+ self.AbLang = model.AbLang(self.hparams)
49
+ self.AbLang.to(self.used_device)
50
+
51
+ if not random_init:
52
+ self.AbLang.load_state_dict(torch.load(self.model_file, map_location=self.used_device))
53
+
54
+ self.tokenizer = tokenizers.ABtokenizer(os.path.join(model_folder, 'vocab.json'))
55
+ self.AbRep = self.AbLang.AbRep
56
+
57
+ self.ncpu = ncpu
58
+ self.spread = 11 # Based on get_spread_sequences function
59
+ if chain == 'heavy':
60
+ self.max_position = 128
61
+ else:
62
+ self.max_position = 127
63
+
64
+
65
+ def freeze(self):
66
+ self.AbLang.eval()
67
+
68
+ def unfreeze(self):
69
+ self.AbLang.train()
70
+
71
+ def __call__(self, sequence, mode='seqcoding', align=False, splitSize=50):
72
+ """
73
+ Mode: sequence, residue, restore or likelihood.
74
+ """
75
+ if not mode in ['rescoding', 'seqcoding', 'restore', 'likelihood']:
76
+ raise SyntaxError("Given mode doesn't exist.")
77
+
78
+ if isinstance(sequence, str): sequence = [sequence]
79
+
80
+
81
+ if align and mode=='restore':
82
+ sequence = self.sequence_aligning(sequence)
83
+ splitSize = ((splitSize//self.spread)+1)*self.spread
84
+
85
+ aList = []
86
+ for sequence_part in [sequence[x:x+splitSize] for x in range(0, len(sequence), splitSize)]:
87
+ aList.append(getattr(self, mode)(sequence_part, align))
88
+
89
+ if mode == 'rescoding':
90
+ if align==True:
91
+ return aList
92
+
93
+ return sum(aList, [])
94
+
95
+ return np.concatenate(aList)
96
+
97
+ def seqcoding(self, seqs, align=False):
98
+ """
99
+ Sequence specific representations
100
+ """
101
+
102
+ tokens = self.tokenizer(seqs, pad=True, device=self.used_device)
103
+
104
+ residue_states = self.AbRep(tokens).last_hidden_states
105
+
106
+ if torch.is_tensor(residue_states): residue_states = residue_states.cpu().detach().numpy()
107
+
108
+ lens = np.vectorize(len)(seqs)
109
+
110
+ lens = np.tile(lens.reshape(-1,1,1), (residue_states.shape[2], 1))
111
+
112
+ seq_codings = np.apply_along_axis(res_to_seq, 2, np.c_[np.swapaxes(residue_states,1,2), lens])
113
+
114
+ del lens
115
+ del residue_states
116
+
117
+ return seq_codings
118
+
119
+ def restore(self, seqs, align=False):
120
+ """
121
+ Restore sequences
122
+ """
123
+
124
+ if align:
125
+ nr_seqs = len(seqs)//self.spread
126
+
127
+ tokens = self.tokenizer(seqs, pad=True, device=self.used_device)
128
+ predictions = self.AbLang(tokens)[:,:,1:21]
129
+
130
+ # Reshape
131
+ tokens = tokens.reshape(nr_seqs, self.spread, -1)
132
+ predictions = predictions.reshape(nr_seqs, self.spread, -1, 20)
133
+ seqs = seqs.reshape(nr_seqs, -1)
134
+
135
+ # Find index of best predictions
136
+ best_seq_idx = torch.argmax(torch.max(predictions, -1).values[:,:,1:2].mean(2), -1)
137
+
138
+ # Select best predictions
139
+ tokens = tokens.gather(1, best_seq_idx.view(-1, 1).unsqueeze(1).repeat(1, 1, tokens.shape[-1])).squeeze(1)
140
+ predictions = predictions[range(predictions.shape[0]), best_seq_idx]
141
+ seqs = np.take_along_axis(seqs, best_seq_idx.view(-1, 1).cpu().numpy(), axis=1)
142
+
143
+
144
+ else:
145
+ tokens = self.tokenizer(seqs, pad=True, device=self.used_device)
146
+ predictions = self.AbLang(tokens)[:,:,1:21]
147
+
148
+ predicted_tokens = torch.max(predictions, -1).indices + 1
149
+ restored_tokens = torch.where(tokens==23, predicted_tokens, tokens)
150
+
151
+ restored_seqs = self.tokenizer(restored_tokens, encode=False)
152
+
153
+ return np.array([res_to_seq(seq, 'reconstruct') for seq in np.c_[restored_seqs, np.vectorize(len)(seqs)]])
154
+
155
+ def likelihood(self, seqs, align=False):
156
+ """
157
+ Possible Mutations
158
+ """
159
+
160
+ tokens = self.tokenizer(seqs, pad=True, device=self.used_device)
161
+
162
+ predictions = self.AbLang(tokens)[:,:,1:21]
163
+
164
+ if torch.is_tensor(predictions): predictions = predictions.cpu().detach().numpy()
165
+
166
+ return predictions
167
+
168
+ def rescoding(self, seqs, align=False):
169
+ """
170
+ Residue specific representations.
171
+ """
172
+
173
+ if align:
174
+
175
+ import pandas as pd
176
+ import anarci
177
+
178
+ anarci_out = anarci.run_anarci(pd.DataFrame(seqs).reset_index().values.tolist(), ncpu=7, scheme='imgt')
179
+ number_alignment = get_number_alignment(anarci_out)
180
+
181
+ seqs = np.array([''.join([i[1] for i in onarci[0][0]]).replace('-','') for onarci in anarci_out[1]])
182
+
183
+ tokens = self.tokenizer(seqs, pad=True, device=self.used_device)
184
+ residue_states = self.AbRep(tokens).last_hidden_states
185
+
186
+ if torch.is_tensor(residue_states): residue_states = residue_states.cpu().detach().numpy()
187
+
188
+ residue_output = np.array([create_alignment(res_embed, oanarci, seq, number_alignment) for res_embed, oanarci, seq in zip(residue_states, anarci_out[1], seqs)])
189
+ del residue_states
190
+ del tokens
191
+
192
+ return output(aligned_embeds=residue_output, number_alignment=number_alignment.apply(lambda x: '{}{}'.format(*x[0]), axis=1).values)
193
+
194
+ else:
195
+
196
+ tokens = self.tokenizer(seqs, pad=True, device=self.used_device)
197
+ residue_states = self.AbRep(tokens).last_hidden_states
198
+
199
+ if torch.is_tensor(residue_states): residue_states = residue_states.cpu().detach().numpy()
200
+
201
+ residue_output = [res_to_list(state, seq) for state, seq in zip(residue_states, seqs)]
202
+
203
+ return residue_output
204
+
205
+ def sequence_aligning(self, seqs):
206
+
207
+ import pandas as pd
208
+ import anarci
209
+
210
+ anarci_out = anarci.run_anarci(
211
+ pd.DataFrame([seq.replace('*', 'X') for seq in seqs]).reset_index().values.tolist(),
212
+ ncpu=self.ncpu,
213
+ scheme='imgt'
214
+ ) #, allowed_species=['human', 'mouse']
215
+ anarci_data = pd.DataFrame([str(anarci[0][0]) if anarci else 'ANARCI_error' for anarci in anarci_out[1]], columns=['anarci']).astype('<U90')
216
+
217
+ seqs = anarci_data.apply(lambda x: get_sequences_from_anarci(x.anarci,
218
+ self.max_position,
219
+ self.spread), axis=1, result_type='expand').to_numpy().reshape(-1)
220
+
221
+ return seqs
222
+
223
+
224
+
225
+
226
+
227
+ @dataclass
228
+ class output():
229
+ """
230
+ Dataclass used to store output.
231
+ """
232
+
233
+ aligned_embeds: None
234
+ number_alignment: None
235
+
236
+
237
+ def res_to_list(state, seq):
238
+ return state[1:1+len(seq)]
239
+
240
+ def res_to_seq(a, mode='mean'):
241
+ """
242
+ Function for how we go from n_values for each amino acid to n_values for each sequence.
243
+
244
+ We leave out the start, end and padding tokens.
245
+ """
246
+ if mode=='sum':
247
+ return a[1:(1+int(a[-1]))].sum()
248
+
249
+ elif mode=='mean':
250
+ return a[1:(1+int(a[-1]))].mean()
251
+
252
+ elif mode=='reconstruct':
253
+
254
+ return a[0][1:(1+int(a[-1]))]
255
+
256
+ def get_number_alignment(oanarci):
257
+ """
258
+ Creates a number alignment from the anarci results.
259
+ """
260
+
261
+ import pandas as pd
262
+
263
+ alist = []
264
+
265
+ for aligned_seq in oanarci[1]:
266
+ alist.append(pd.DataFrame(aligned_seq[0][0])[0])
267
+
268
+ unsorted_alignment = pd.concat(alist).drop_duplicates()
269
+ max_alignment = get_max_alignment()
270
+
271
+ return max_alignment.merge(unsorted_alignment.to_frame(), left_on=0, right_on=0)
272
+
273
+ def get_max_alignment():
274
+ """
275
+ Create maximum possible alignment for sorting
276
+ """
277
+
278
+ import pandas as pd
279
+
280
+ sortlist = []
281
+
282
+ for num in range(1, 128+1):
283
+
284
+ if num==112:
285
+ for char in string.ascii_uppercase[::-1]:
286
+ sortlist.append([(num, char)])
287
+
288
+ sortlist.append([(num,' ')])
289
+
290
+ else:
291
+ sortlist.append([(num,' ')])
292
+ for char in string.ascii_uppercase:
293
+ sortlist.append([(num, char)])
294
+
295
+ return pd.DataFrame(sortlist)
296
+
297
+
298
+ def create_alignment(res_embeds, oanarci, seq, number_alignment):
299
+
300
+ import pandas as pd
301
+
302
+ datadf = pd.DataFrame(oanarci[0][0])
303
+
304
+ sequence_alignment = number_alignment.merge(datadf, how='left', on=0).fillna('-')[1]
305
+
306
+ idxs = np.where(sequence_alignment.values == '-')[0]
307
+
308
+ idxs = [idx-num for num, idx in enumerate(idxs)]
309
+
310
+ aligned_embeds = pd.DataFrame(np.insert(res_embeds[1:1+len(seq)], idxs , 0, axis=0))
311
+
312
+ return pd.concat([aligned_embeds, sequence_alignment], axis=1).values
313
+
314
+ def turn_into_numba(anarcis):
315
+ """
316
+ Turns the nested anarci dictionary into a numba item, allowing us to use numba on it.
317
+ """
318
+
319
+ anarci_list = List.empty_list(unicode_type)
320
+ [anarci_list.append(str(anarci)) for anarci in anarcis]
321
+
322
+ return anarci_list
323
+
324
+ @jit(nopython=True)
325
+ def get_spread_sequences(seq, spread, start_position, numbaList):
326
+ """
327
+ Test sequences which are 8 positions shorter (position 10 + max CDR1 gap of 7) up to 2 positions longer (possible insertions).
328
+ """
329
+
330
+ for diff in range(start_position-8, start_position+2+1):
331
+ numbaList.append('*'*diff+seq)
332
+
333
+ return numbaList
334
+
335
+ def get_sequences_from_anarci(out_anarci, max_position, spread):
336
+ """
337
+ Ensures correct masking on each side of sequence
338
+ """
339
+
340
+ if out_anarci == 'ANARCI_error':
341
+ return np.array(['ANARCI-ERR']*spread)
342
+
343
+ end_position = int(re.search(r'\d+', out_anarci[::-1]).group()[::-1])
344
+ # Fixes ANARCI error of poor numbering of the CDR1 region
345
+ start_position = int(re.search(r'\d+,\s\'.\'\),\s\'[^-]+\'\),\s\(\(\d+,\s\'.\'\),\s\'[^-]+\'\),\s\(\(\d+,\s\'.\'\),\s\'[^-]+\'\),\s\(\(\d+,\s\'.\'\),\s\'[^-]+',
346
+ out_anarci).group().split(',')[0]) - 1
347
+
348
+ sequence = "".join(re.findall(r"(?i)[A-Z*]", "".join(re.findall(r'\),\s\'[A-Z*]', out_anarci))))
349
+
350
+ sequence_j = ''.join(sequence).replace('-','').replace('X','*') + '*'*(max_position-int(end_position))
351
+
352
+ numba_list = List.empty_list(unicode_type)
353
+
354
+ spread_seqs = np.array(get_spread_sequences(sequence_j, spread, start_position, numba_list))
355
+
356
+ return spread_seqs
357
+
358
+
ablang2/models/ablang1/tokenizers.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import torch
3
+
4
+ class ABtokenizer():
5
+ """
6
+ Tokenizer for proteins. Both aa to token and token to aa.
7
+ """
8
+
9
+ def __init__(self, vocab_dir):
10
+ self.set_vocabs(vocab_dir)
11
+ self.pad_token = self.vocab_to_token['-']
12
+
13
+ def __call__(self, sequenceList, encode=True, pad=False, device='cpu'):
14
+ #assert isinstance(sequenceList, list)
15
+
16
+ if encode:
17
+ data = [self.encode(seq, device=device) for seq in sequenceList]
18
+ if pad: return torch.nn.utils.rnn.pad_sequence(data, batch_first=True, padding_value=self.pad_token)
19
+ else: return data
20
+
21
+ else: return [self.decode(token) for token in sequenceList]
22
+
23
+ def set_vocabs(self, vocab_dir):
24
+ with open(vocab_dir, encoding="utf-8") as vocab_handle:
25
+ self.vocab_to_token=json.load(vocab_handle)
26
+
27
+ self.vocab_to_aa = {v: k for k, v in self.vocab_to_token.items()}
28
+
29
+ def encode(self, sequence, device='cpu'):
30
+ try:
31
+ encoded = [self.vocab_to_token["<"]]+[self.vocab_to_token[resn] for resn in sequence]+[self.vocab_to_token[">"]]
32
+ except KeyError as e:
33
+
34
+ wrong_aa = e.args
35
+
36
+ e.args = (f"Following character(s) not accepted in sequences: {wrong_aa}. \
37
+ Please only use amino acids (MRHKDESTNQCGPAVIFYWL) or the mask token (*).",)
38
+ raise
39
+
40
+ return torch.tensor(encoded, dtype=torch.long, device=device)
41
+ # Start and Stop token should probably not be added here, but instead earlier
42
+
43
+ def decode(self, seqtokens):
44
+
45
+ if torch.is_tensor(seqtokens): seqtokens = seqtokens.cpu().numpy()
46
+
47
+ return ''.join([self.vocab_to_aa[token] for token in seqtokens])
48
+
49
+
50
+
ablang2/models/ablang2/__init__.py ADDED
File without changes
ablang2/models/ablang2/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (150 Bytes). View file