import numpy as np import torch from extra_utils import res_to_list, res_to_seq class AbEncoding: def __init__(self, device = 'cpu', ncpu = 1): self.device = device self.ncpu = ncpu def _initiate_abencoding(self, model, tokenizer): self.AbLang = model self.tokenizer = tokenizer def _encode_sequences(self, seqs): tokens = self.tokenizer(seqs, pad=True, w_extra_tkns=False, device=self.used_device) with torch.no_grad(): return self.AbLang.AbRep(tokens).last_hidden_states def _predict_logits(self, seqs): tokens = self.tokenizer(seqs, pad=True, w_extra_tkns=False, device=self.used_device) with torch.no_grad(): return self.AbLang(tokens) def _predict_logits_with_step_masking(self, seqs): tokens = self.tokenizer(seqs, pad=True, w_extra_tkns=False, device=self.used_device) logits = [] for single_seq_tokens in tokens: tkn_len = len(single_seq_tokens) masked_tokens = single_seq_tokens.repeat(tkn_len, 1) for num in range(tkn_len): masked_tokens[num, num] = self.tokenizer.mask_token with torch.no_grad(): logits_tmp = self.AbLang(masked_tokens) logits_tmp = torch.stack([logits_tmp[num, num] for num in range(tkn_len)]) logits.append(logits_tmp) return torch.stack(logits, dim=0) def seqcoding(self, seqs, **kwargs): """ Sequence specific representations """ encodings = self._encode_sequences(seqs).cpu().numpy() lens = np.vectorize(len)(seqs) lens = np.tile(lens.reshape(-1,1,1), (encodings.shape[2], 1)) return np.apply_along_axis(res_to_seq, 2, np.c_[np.swapaxes(encodings,1,2), lens]) def rescoding(self, seqs, align=False, **kwargs): """ Residue specific representations. """ encodings = self._encode_sequences(seqs).cpu().numpy() if align: return encodings else: return [res_to_list(state, seq) for state, seq in zip(encodings, seqs)] def likelihood(self, seqs, align=False, stepwise_masking=False, **kwargs): """ Likelihood of mutations """ if stepwise_masking: logits = self._predict_logits_with_step_masking(seqs).cpu().numpy() else: logits = self._predict_logits(seqs).cpu().numpy() if align: return logits else: return [res_to_list(state, seq) for state, seq in zip(logits, seqs)] def probability(self, seqs, align=False, stepwise_masking=False, **kwargs): """ Probability of mutations """ if stepwise_masking: logits = self._predict_logits_with_step_masking(seqs) else: logits = self._predict_logits(seqs) probs = logits.softmax(-1).cpu().numpy() if align: return probs else: return [res_to_list(state, seq) for state, seq in zip(probs, seqs)]