import numpy as np import torch from extra_utils import res_to_seq, get_sequences_from_anarci class AbRestore: def __init__(self, spread = 11, device = 'cpu', ncpu = 1): self.spread = spread self.device = device self.ncpu = ncpu def _initiate_abrestore(self, model, tokenizer): self.AbLang = model self.tokenizer = tokenizer def restore(self, seqs, align = False, **kwargs): """ Restore sequences """ n_seqs = len(seqs) if align: seqs = self._sequence_aligning(seqs) nr_seqs = len(seqs)//self.spread tokens = self.tokenizer(seqs, pad=True, w_extra_tkns=False, device=self.used_device) predictions = self.AbLang(tokens)[:,:,1:21] # Reshape tokens = tokens.reshape(nr_seqs, self.spread, -1) predictions = predictions.reshape(nr_seqs, self.spread, -1, 20) seqs = seqs.reshape(nr_seqs, -1) # Find index of best predictions best_seq_idx = torch.argmax(torch.max(predictions, -1).values[:,:,1:2].mean(2), -1) # Select best predictions tokens = tokens.gather(1, best_seq_idx.view(-1, 1).unsqueeze(1).repeat(1, 1, tokens.shape[-1])).squeeze(1) predictions = predictions[range(predictions.shape[0]), best_seq_idx] seqs = np.take_along_axis(seqs, best_seq_idx.view(-1, 1).cpu().numpy(), axis=1) else: tokens = self.tokenizer(seqs, pad=True, w_extra_tkns=False, device=self.used_device) predictions = self.AbLang(tokens)[:,:,1:21] predicted_tokens = torch.max(predictions, -1).indices + 1 restored_tokens = torch.where(tokens==23, predicted_tokens, tokens) restored_seqs = self.tokenizer(restored_tokens, mode="decode") if n_seqs < len(restored_seqs): restored_seqs = [f"{h}|{l}".replace('-','') for h,l in zip(restored_seqs[:n_seqs], restored_seqs[n_seqs:])] seqs = [f"{h}|{l}" for h,l in zip(seqs[:n_seqs], seqs[n_seqs:])] return np.array([res_to_seq(seq, 'restore') for seq in np.c_[restored_seqs, np.vectorize(len)(seqs)]]) def _create_spread_of_sequences(self, seqs, chain = 'H'): import pandas as pd import anarci chain_idx = 0 if chain == 'H' else 1 numbered_seqs = anarci.run_anarci( pd.DataFrame([seq[chain_idx].replace('*', 'X') for seq in seqs]).reset_index().values.tolist(), ncpu=self.ncpu, scheme='imgt', allowed_species=['human', 'mouse'], ) anarci_data = pd.DataFrame( [str(anarci[0][0]) if anarci else 'ANARCI_error' for anarci in numbered_seqs[1]], columns=['anarci'] ).astype('", "").replace("<", "").split("|") for pairs in seqs] spread_heavy = [f"<{seq}>" for seq in self._create_spread_of_sequences(tmp_seqs, chain = 'H')] spread_light = [f"<{seq}>" for seq in self._create_spread_of_sequences(tmp_seqs, chain = 'L')] return np.concatenate([np.array(spread_heavy),np.array(spread_light)])