Upload 15 files
Browse files- .gitattributes +2 -0
- MyConfig.py +13 -0
- MyPipe.py +76 -0
- README.md +158 -3
- briarmbg.py +458 -0
- config.json +25 -0
- example_inference.py +39 -0
- example_input.jpg +0 -0
- model.pth +3 -0
- model.safetensors +3 -0
- preprocessor_config.json +23 -0
- pytorch_model.bin +3 -0
- requirements.txt +8 -0
- results.png +3 -0
- t4.png +3 -0
- utilities.py +25 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
results.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
t4.png filter=lfs diff=lfs merge=lfs -text
|
MyConfig.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
class RMBGConfig(PretrainedConfig):
|
| 5 |
+
model_type = "SegformerForSemanticSegmentation"
|
| 6 |
+
def __init__(
|
| 7 |
+
self,
|
| 8 |
+
in_ch=3,
|
| 9 |
+
out_ch=1,
|
| 10 |
+
**kwargs):
|
| 11 |
+
self.in_ch = in_ch
|
| 12 |
+
self.out_ch = out_ch
|
| 13 |
+
super().__init__(**kwargs)
|
MyPipe.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, os
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from torchvision.transforms.functional import normalize
|
| 4 |
+
import numpy as np
|
| 5 |
+
from transformers import Pipeline
|
| 6 |
+
from transformers.image_utils import load_image
|
| 7 |
+
from skimage import io
|
| 8 |
+
from PIL import Image
|
| 9 |
+
|
| 10 |
+
class RMBGPipe(Pipeline):
|
| 11 |
+
def __init__(self,**kwargs):
|
| 12 |
+
Pipeline.__init__(self,**kwargs)
|
| 13 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
self.model.to(self.device)
|
| 15 |
+
self.model.eval()
|
| 16 |
+
|
| 17 |
+
def _sanitize_parameters(self, **kwargs):
|
| 18 |
+
# parse parameters
|
| 19 |
+
preprocess_kwargs = {}
|
| 20 |
+
postprocess_kwargs = {}
|
| 21 |
+
if "model_input_size" in kwargs :
|
| 22 |
+
preprocess_kwargs["model_input_size"] = kwargs["model_input_size"]
|
| 23 |
+
if "return_mask" in kwargs:
|
| 24 |
+
postprocess_kwargs["return_mask"] = kwargs["return_mask"]
|
| 25 |
+
return preprocess_kwargs, {}, postprocess_kwargs
|
| 26 |
+
|
| 27 |
+
def preprocess(self,input_image,model_input_size: list=[1024,1024]):
|
| 28 |
+
# preprocess the input
|
| 29 |
+
orig_im = load_image(input_image)
|
| 30 |
+
orig_im = np.array(orig_im)
|
| 31 |
+
orig_im_size = orig_im.shape[0:2]
|
| 32 |
+
preprocessed_image = self.preprocess_image(orig_im, model_input_size).to(self.device)
|
| 33 |
+
inputs = {
|
| 34 |
+
"preprocessed_image":preprocessed_image,
|
| 35 |
+
"orig_im_size":orig_im_size,
|
| 36 |
+
"input_image" : input_image
|
| 37 |
+
}
|
| 38 |
+
return inputs
|
| 39 |
+
|
| 40 |
+
def _forward(self,inputs):
|
| 41 |
+
result = self.model(inputs.pop("preprocessed_image"))
|
| 42 |
+
inputs["result"] = result
|
| 43 |
+
return inputs
|
| 44 |
+
|
| 45 |
+
def postprocess(self,inputs,return_mask:bool=False ):
|
| 46 |
+
result = inputs.pop("result")
|
| 47 |
+
orig_im_size = inputs.pop("orig_im_size")
|
| 48 |
+
input_image = inputs.pop("input_image")
|
| 49 |
+
result_image = self.postprocess_image(result[0][0], orig_im_size)
|
| 50 |
+
pil_im = Image.fromarray(result_image)
|
| 51 |
+
if return_mask ==True :
|
| 52 |
+
return pil_im
|
| 53 |
+
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
| 54 |
+
input_image = load_image(input_image)
|
| 55 |
+
no_bg_image.paste(input_image, mask=pil_im)
|
| 56 |
+
return no_bg_image
|
| 57 |
+
|
| 58 |
+
# utilities functions
|
| 59 |
+
def preprocess_image(self,im: np.ndarray, model_input_size: list=[1024,1024]) -> torch.Tensor:
|
| 60 |
+
# same as utilities.py with minor modification
|
| 61 |
+
if len(im.shape) < 3:
|
| 62 |
+
im = im[:, :, np.newaxis]
|
| 63 |
+
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
| 64 |
+
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear')
|
| 65 |
+
image = torch.divide(im_tensor,255.0)
|
| 66 |
+
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
| 67 |
+
return image
|
| 68 |
+
|
| 69 |
+
def postprocess_image(self,result: torch.Tensor, im_size: list)-> np.ndarray:
|
| 70 |
+
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0)
|
| 71 |
+
ma = torch.max(result)
|
| 72 |
+
mi = torch.min(result)
|
| 73 |
+
result = (result-mi)/(ma-mi)
|
| 74 |
+
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
|
| 75 |
+
im_array = np.squeeze(im_array)
|
| 76 |
+
return im_array
|
README.md
CHANGED
|
@@ -1,3 +1,158 @@
|
|
| 1 |
-
---
|
| 2 |
-
license:
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
license_name: bria-rmbg-1.4
|
| 4 |
+
license_link: https://bria.ai/bria-huggingface-model-license-agreement/
|
| 5 |
+
pipeline_tag: image-segmentation
|
| 6 |
+
tags:
|
| 7 |
+
- remove background
|
| 8 |
+
- background
|
| 9 |
+
- background-removal
|
| 10 |
+
- Pytorch
|
| 11 |
+
- vision
|
| 12 |
+
- legal liability
|
| 13 |
+
- transformers
|
| 14 |
+
|
| 15 |
+
extra_gated_description: RMBG v1.4 is available as a source-available model for non-commercial use
|
| 16 |
+
extra_gated_heading: "Fill in this form to get instant access"
|
| 17 |
+
extra_gated_fields:
|
| 18 |
+
Name: text
|
| 19 |
+
Company/Org name: text
|
| 20 |
+
Org Type (Early/Growth Startup, Enterprise, Academy): text
|
| 21 |
+
Role: text
|
| 22 |
+
Country: text
|
| 23 |
+
Email: text
|
| 24 |
+
By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
# BRIA Background Removal v1.4 Model Card
|
| 28 |
+
|
| 29 |
+
RMBG v1.4 is our state-of-the-art background removal model, designed to effectively separate foreground from background in a range of
|
| 30 |
+
categories and image types. This model has been trained on a carefully selected dataset, which includes:
|
| 31 |
+
general stock images, e-commerce, gaming, and advertising content, making it suitable for commercial use cases powering enterprise content creation at scale.
|
| 32 |
+
The accuracy, efficiency, and versatility currently rival leading source-available models.
|
| 33 |
+
It is ideal where content safety, legally licensed datasets, and bias mitigation are paramount.
|
| 34 |
+
|
| 35 |
+
Developed by BRIA AI, RMBG v1.4 is available as a source-available model for non-commercial use.
|
| 36 |
+
|
| 37 |
+
[CLICK HERE FOR A DEMO](https://huggingface.co/spaces/briaai/BRIA-RMBG-1.4)
|
| 38 |
+

|
| 39 |
+
|
| 40 |
+
### Model Description
|
| 41 |
+
|
| 42 |
+
- **Developed by:** [BRIA AI](https://bria.ai/)
|
| 43 |
+
- **Model type:** Background Removal
|
| 44 |
+
- **License:** [bria-rmbg-1.4](https://bria.ai/bria-huggingface-model-license-agreement/)
|
| 45 |
+
- The model is released under a Creative Commons license for non-commercial use.
|
| 46 |
+
- Commercial use is subject to a commercial agreement with BRIA. [Contact Us](https://bria.ai/contact-us) for more information.
|
| 47 |
+
|
| 48 |
+
- **Model Description:** BRIA RMBG 1.4 is a saliency segmentation model trained exclusively on a professional-grade dataset.
|
| 49 |
+
- **BRIA:** Resources for more information: [BRIA AI](https://bria.ai/)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
## Training data
|
| 54 |
+
Bria-RMBG model was trained with over 12,000 high-quality, high-resolution, manually labeled (pixel-wise accuracy), fully licensed images.
|
| 55 |
+
Our benchmark included balanced gender, balanced ethnicity, and people with different types of disabilities.
|
| 56 |
+
For clarity, we provide our data distribution according to different categories, demonstrating our model’s versatility.
|
| 57 |
+
|
| 58 |
+
### Distribution of images:
|
| 59 |
+
|
| 60 |
+
| Category | Distribution |
|
| 61 |
+
| -----------------------------------| -----------------------------------:|
|
| 62 |
+
| Objects only | 45.11% |
|
| 63 |
+
| People with objects/animals | 25.24% |
|
| 64 |
+
| People only | 17.35% |
|
| 65 |
+
| people/objects/animals with text | 8.52% |
|
| 66 |
+
| Text only | 2.52% |
|
| 67 |
+
| Animals only | 1.89% |
|
| 68 |
+
|
| 69 |
+
| Category | Distribution |
|
| 70 |
+
| -----------------------------------| -----------------------------------------:|
|
| 71 |
+
| Photorealistic | 87.70% |
|
| 72 |
+
| Non-Photorealistic | 12.30% |
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
| Category | Distribution |
|
| 76 |
+
| -----------------------------------| -----------------------------------:|
|
| 77 |
+
| Non Solid Background | 52.05% |
|
| 78 |
+
| Solid Background | 47.95%
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
| Category | Distribution |
|
| 82 |
+
| -----------------------------------| -----------------------------------:|
|
| 83 |
+
| Single main foreground object | 51.42% |
|
| 84 |
+
| Multiple objects in the foreground | 48.58% |
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
## Qualitative Evaluation
|
| 88 |
+
|
| 89 |
+

|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
## Architecture
|
| 93 |
+
|
| 94 |
+
RMBG v1.4 is developed on the [IS-Net](https://github.com/xuebinqin/DIS) enhanced with our unique training scheme and proprietary dataset.
|
| 95 |
+
These modifications significantly improve the model’s accuracy and effectiveness in diverse image-processing scenarios.
|
| 96 |
+
|
| 97 |
+
## Installation
|
| 98 |
+
```bash
|
| 99 |
+
pip install -qr https://huggingface.co/briaai/RMBG-1.4/resolve/main/requirements.txt
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
## Usage
|
| 103 |
+
|
| 104 |
+
Either load the pipeline
|
| 105 |
+
```python
|
| 106 |
+
from transformers import pipeline
|
| 107 |
+
image_path = "https://farm5.staticflickr.com/4007/4322154488_997e69e4cf_z.jpg"
|
| 108 |
+
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
|
| 109 |
+
pillow_mask = pipe(image_path, return_mask = True) # outputs a pillow mask
|
| 110 |
+
pillow_image = pipe(image_path) # applies mask on input and returns a pillow image
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
Or load the model
|
| 114 |
+
```python
|
| 115 |
+
from transformers import AutoModelForImageSegmentation
|
| 116 |
+
from torchvision.transforms.functional import normalize
|
| 117 |
+
model = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-1.4",trust_remote_code=True)
|
| 118 |
+
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor:
|
| 119 |
+
if len(im.shape) < 3:
|
| 120 |
+
im = im[:, :, np.newaxis]
|
| 121 |
+
# orig_im_size=im.shape[0:2]
|
| 122 |
+
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
| 123 |
+
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear')
|
| 124 |
+
image = torch.divide(im_tensor,255.0)
|
| 125 |
+
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
| 126 |
+
return image
|
| 127 |
+
|
| 128 |
+
def postprocess_image(result: torch.Tensor, im_size: list)-> np.ndarray:
|
| 129 |
+
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0)
|
| 130 |
+
ma = torch.max(result)
|
| 131 |
+
mi = torch.min(result)
|
| 132 |
+
result = (result-mi)/(ma-mi)
|
| 133 |
+
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
|
| 134 |
+
im_array = np.squeeze(im_array)
|
| 135 |
+
return im_array
|
| 136 |
+
|
| 137 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 138 |
+
model.to(device)
|
| 139 |
+
|
| 140 |
+
# prepare input
|
| 141 |
+
image_path = "https://farm5.staticflickr.com/4007/4322154488_997e69e4cf_z.jpg"
|
| 142 |
+
orig_im = io.imread(image_path)
|
| 143 |
+
orig_im_size = orig_im.shape[0:2]
|
| 144 |
+
image = preprocess_image(orig_im, model_input_size).to(device)
|
| 145 |
+
|
| 146 |
+
# inference
|
| 147 |
+
result=model(image)
|
| 148 |
+
|
| 149 |
+
# post process
|
| 150 |
+
result_image = postprocess_image(result[0][0], orig_im_size)
|
| 151 |
+
|
| 152 |
+
# save result
|
| 153 |
+
pil_im = Image.fromarray(result_image)
|
| 154 |
+
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
| 155 |
+
orig_image = Image.open(image_path)
|
| 156 |
+
no_bg_image.paste(orig_image, mask=pil_im)
|
| 157 |
+
```
|
| 158 |
+
|
briarmbg.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from transformers import PreTrainedModel
|
| 5 |
+
from .MyConfig import RMBGConfig
|
| 6 |
+
|
| 7 |
+
class REBNCONV(nn.Module):
|
| 8 |
+
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
|
| 9 |
+
super(REBNCONV,self).__init__()
|
| 10 |
+
|
| 11 |
+
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate,stride=stride)
|
| 12 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
| 13 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
| 14 |
+
|
| 15 |
+
def forward(self,x):
|
| 16 |
+
|
| 17 |
+
hx = x
|
| 18 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
| 19 |
+
|
| 20 |
+
return xout
|
| 21 |
+
|
| 22 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
| 23 |
+
def _upsample_like(src,tar):
|
| 24 |
+
|
| 25 |
+
src = F.interpolate(src,size=tar.shape[2:],mode='bilinear')
|
| 26 |
+
|
| 27 |
+
return src
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
### RSU-7 ###
|
| 31 |
+
class RSU7(nn.Module):
|
| 32 |
+
|
| 33 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
| 34 |
+
super(RSU7,self).__init__()
|
| 35 |
+
|
| 36 |
+
self.in_ch = in_ch
|
| 37 |
+
self.mid_ch = mid_ch
|
| 38 |
+
self.out_ch = out_ch
|
| 39 |
+
|
| 40 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) ## 1 -> 1/2
|
| 41 |
+
|
| 42 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 43 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 44 |
+
|
| 45 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 46 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 47 |
+
|
| 48 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 49 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 50 |
+
|
| 51 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 52 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 53 |
+
|
| 54 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 55 |
+
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 56 |
+
|
| 57 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 58 |
+
|
| 59 |
+
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 60 |
+
|
| 61 |
+
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 62 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 63 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 64 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 65 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 66 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 67 |
+
|
| 68 |
+
def forward(self,x):
|
| 69 |
+
b, c, h, w = x.shape
|
| 70 |
+
|
| 71 |
+
hx = x
|
| 72 |
+
hxin = self.rebnconvin(hx)
|
| 73 |
+
|
| 74 |
+
hx1 = self.rebnconv1(hxin)
|
| 75 |
+
hx = self.pool1(hx1)
|
| 76 |
+
|
| 77 |
+
hx2 = self.rebnconv2(hx)
|
| 78 |
+
hx = self.pool2(hx2)
|
| 79 |
+
|
| 80 |
+
hx3 = self.rebnconv3(hx)
|
| 81 |
+
hx = self.pool3(hx3)
|
| 82 |
+
|
| 83 |
+
hx4 = self.rebnconv4(hx)
|
| 84 |
+
hx = self.pool4(hx4)
|
| 85 |
+
|
| 86 |
+
hx5 = self.rebnconv5(hx)
|
| 87 |
+
hx = self.pool5(hx5)
|
| 88 |
+
|
| 89 |
+
hx6 = self.rebnconv6(hx)
|
| 90 |
+
|
| 91 |
+
hx7 = self.rebnconv7(hx6)
|
| 92 |
+
|
| 93 |
+
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
| 94 |
+
hx6dup = _upsample_like(hx6d,hx5)
|
| 95 |
+
|
| 96 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
| 97 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
| 98 |
+
|
| 99 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
| 100 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 101 |
+
|
| 102 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
| 103 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 104 |
+
|
| 105 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 106 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 107 |
+
|
| 108 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 109 |
+
|
| 110 |
+
return hx1d + hxin
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
### RSU-6 ###
|
| 114 |
+
class RSU6(nn.Module):
|
| 115 |
+
|
| 116 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 117 |
+
super(RSU6,self).__init__()
|
| 118 |
+
|
| 119 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 120 |
+
|
| 121 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 122 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 123 |
+
|
| 124 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 125 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 126 |
+
|
| 127 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 128 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 129 |
+
|
| 130 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 131 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 132 |
+
|
| 133 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 134 |
+
|
| 135 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 136 |
+
|
| 137 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 138 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 139 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 140 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 141 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 142 |
+
|
| 143 |
+
def forward(self,x):
|
| 144 |
+
|
| 145 |
+
hx = x
|
| 146 |
+
|
| 147 |
+
hxin = self.rebnconvin(hx)
|
| 148 |
+
|
| 149 |
+
hx1 = self.rebnconv1(hxin)
|
| 150 |
+
hx = self.pool1(hx1)
|
| 151 |
+
|
| 152 |
+
hx2 = self.rebnconv2(hx)
|
| 153 |
+
hx = self.pool2(hx2)
|
| 154 |
+
|
| 155 |
+
hx3 = self.rebnconv3(hx)
|
| 156 |
+
hx = self.pool3(hx3)
|
| 157 |
+
|
| 158 |
+
hx4 = self.rebnconv4(hx)
|
| 159 |
+
hx = self.pool4(hx4)
|
| 160 |
+
|
| 161 |
+
hx5 = self.rebnconv5(hx)
|
| 162 |
+
|
| 163 |
+
hx6 = self.rebnconv6(hx5)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
| 167 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
| 168 |
+
|
| 169 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
| 170 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 171 |
+
|
| 172 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
| 173 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 174 |
+
|
| 175 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 176 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 177 |
+
|
| 178 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 179 |
+
|
| 180 |
+
return hx1d + hxin
|
| 181 |
+
|
| 182 |
+
### RSU-5 ###
|
| 183 |
+
class RSU5(nn.Module):
|
| 184 |
+
|
| 185 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 186 |
+
super(RSU5,self).__init__()
|
| 187 |
+
|
| 188 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 189 |
+
|
| 190 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 191 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 192 |
+
|
| 193 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 194 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 195 |
+
|
| 196 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 197 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 198 |
+
|
| 199 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 200 |
+
|
| 201 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 202 |
+
|
| 203 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 204 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 205 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 206 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 207 |
+
|
| 208 |
+
def forward(self,x):
|
| 209 |
+
|
| 210 |
+
hx = x
|
| 211 |
+
|
| 212 |
+
hxin = self.rebnconvin(hx)
|
| 213 |
+
|
| 214 |
+
hx1 = self.rebnconv1(hxin)
|
| 215 |
+
hx = self.pool1(hx1)
|
| 216 |
+
|
| 217 |
+
hx2 = self.rebnconv2(hx)
|
| 218 |
+
hx = self.pool2(hx2)
|
| 219 |
+
|
| 220 |
+
hx3 = self.rebnconv3(hx)
|
| 221 |
+
hx = self.pool3(hx3)
|
| 222 |
+
|
| 223 |
+
hx4 = self.rebnconv4(hx)
|
| 224 |
+
|
| 225 |
+
hx5 = self.rebnconv5(hx4)
|
| 226 |
+
|
| 227 |
+
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
| 228 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 229 |
+
|
| 230 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
| 231 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 232 |
+
|
| 233 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 234 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 235 |
+
|
| 236 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 237 |
+
|
| 238 |
+
return hx1d + hxin
|
| 239 |
+
|
| 240 |
+
### RSU-4 ###
|
| 241 |
+
class RSU4(nn.Module):
|
| 242 |
+
|
| 243 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 244 |
+
super(RSU4,self).__init__()
|
| 245 |
+
|
| 246 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 247 |
+
|
| 248 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 249 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 250 |
+
|
| 251 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 252 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 253 |
+
|
| 254 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 255 |
+
|
| 256 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 257 |
+
|
| 258 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 259 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 260 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 261 |
+
|
| 262 |
+
def forward(self,x):
|
| 263 |
+
|
| 264 |
+
hx = x
|
| 265 |
+
|
| 266 |
+
hxin = self.rebnconvin(hx)
|
| 267 |
+
|
| 268 |
+
hx1 = self.rebnconv1(hxin)
|
| 269 |
+
hx = self.pool1(hx1)
|
| 270 |
+
|
| 271 |
+
hx2 = self.rebnconv2(hx)
|
| 272 |
+
hx = self.pool2(hx2)
|
| 273 |
+
|
| 274 |
+
hx3 = self.rebnconv3(hx)
|
| 275 |
+
|
| 276 |
+
hx4 = self.rebnconv4(hx3)
|
| 277 |
+
|
| 278 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
| 279 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 280 |
+
|
| 281 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 282 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 283 |
+
|
| 284 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 285 |
+
|
| 286 |
+
return hx1d + hxin
|
| 287 |
+
|
| 288 |
+
### RSU-4F ###
|
| 289 |
+
class RSU4F(nn.Module):
|
| 290 |
+
|
| 291 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 292 |
+
super(RSU4F,self).__init__()
|
| 293 |
+
|
| 294 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 295 |
+
|
| 296 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 297 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 298 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
| 299 |
+
|
| 300 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
| 301 |
+
|
| 302 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
| 303 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
| 304 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 305 |
+
|
| 306 |
+
def forward(self,x):
|
| 307 |
+
|
| 308 |
+
hx = x
|
| 309 |
+
|
| 310 |
+
hxin = self.rebnconvin(hx)
|
| 311 |
+
|
| 312 |
+
hx1 = self.rebnconv1(hxin)
|
| 313 |
+
hx2 = self.rebnconv2(hx1)
|
| 314 |
+
hx3 = self.rebnconv3(hx2)
|
| 315 |
+
|
| 316 |
+
hx4 = self.rebnconv4(hx3)
|
| 317 |
+
|
| 318 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
| 319 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
| 320 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
| 321 |
+
|
| 322 |
+
return hx1d + hxin
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
class myrebnconv(nn.Module):
|
| 326 |
+
def __init__(self, in_ch=3,
|
| 327 |
+
out_ch=1,
|
| 328 |
+
kernel_size=3,
|
| 329 |
+
stride=1,
|
| 330 |
+
padding=1,
|
| 331 |
+
dilation=1,
|
| 332 |
+
groups=1):
|
| 333 |
+
super(myrebnconv,self).__init__()
|
| 334 |
+
|
| 335 |
+
self.conv = nn.Conv2d(in_ch,
|
| 336 |
+
out_ch,
|
| 337 |
+
kernel_size=kernel_size,
|
| 338 |
+
stride=stride,
|
| 339 |
+
padding=padding,
|
| 340 |
+
dilation=dilation,
|
| 341 |
+
groups=groups)
|
| 342 |
+
self.bn = nn.BatchNorm2d(out_ch)
|
| 343 |
+
self.rl = nn.ReLU(inplace=True)
|
| 344 |
+
|
| 345 |
+
def forward(self,x):
|
| 346 |
+
return self.rl(self.bn(self.conv(x)))
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
class BriaRMBG(PreTrainedModel):
|
| 350 |
+
config_class = RMBGConfig
|
| 351 |
+
def __init__(self,config:RMBGConfig = RMBGConfig()):
|
| 352 |
+
super().__init__(config)
|
| 353 |
+
in_ch = config.in_ch # 3
|
| 354 |
+
out_ch = config.out_ch # 1
|
| 355 |
+
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
| 356 |
+
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 357 |
+
|
| 358 |
+
self.stage1 = RSU7(64,32,64)
|
| 359 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 360 |
+
|
| 361 |
+
self.stage2 = RSU6(64,32,128)
|
| 362 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 363 |
+
|
| 364 |
+
self.stage3 = RSU5(128,64,256)
|
| 365 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 366 |
+
|
| 367 |
+
self.stage4 = RSU4(256,128,512)
|
| 368 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 369 |
+
|
| 370 |
+
self.stage5 = RSU4F(512,256,512)
|
| 371 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 372 |
+
|
| 373 |
+
self.stage6 = RSU4F(512,256,512)
|
| 374 |
+
|
| 375 |
+
# decoder
|
| 376 |
+
self.stage5d = RSU4F(1024,256,512)
|
| 377 |
+
self.stage4d = RSU4(1024,128,256)
|
| 378 |
+
self.stage3d = RSU5(512,64,128)
|
| 379 |
+
self.stage2d = RSU6(256,32,64)
|
| 380 |
+
self.stage1d = RSU7(128,16,64)
|
| 381 |
+
|
| 382 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 383 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 384 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
| 385 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
| 386 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
| 387 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
| 388 |
+
|
| 389 |
+
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
| 390 |
+
|
| 391 |
+
def forward(self,x):
|
| 392 |
+
|
| 393 |
+
hx = x
|
| 394 |
+
|
| 395 |
+
hxin = self.conv_in(hx)
|
| 396 |
+
#hx = self.pool_in(hxin)
|
| 397 |
+
|
| 398 |
+
#stage 1
|
| 399 |
+
hx1 = self.stage1(hxin)
|
| 400 |
+
hx = self.pool12(hx1)
|
| 401 |
+
|
| 402 |
+
#stage 2
|
| 403 |
+
hx2 = self.stage2(hx)
|
| 404 |
+
hx = self.pool23(hx2)
|
| 405 |
+
|
| 406 |
+
#stage 3
|
| 407 |
+
hx3 = self.stage3(hx)
|
| 408 |
+
hx = self.pool34(hx3)
|
| 409 |
+
|
| 410 |
+
#stage 4
|
| 411 |
+
hx4 = self.stage4(hx)
|
| 412 |
+
hx = self.pool45(hx4)
|
| 413 |
+
|
| 414 |
+
#stage 5
|
| 415 |
+
hx5 = self.stage5(hx)
|
| 416 |
+
hx = self.pool56(hx5)
|
| 417 |
+
|
| 418 |
+
#stage 6
|
| 419 |
+
hx6 = self.stage6(hx)
|
| 420 |
+
hx6up = _upsample_like(hx6,hx5)
|
| 421 |
+
|
| 422 |
+
#-------------------- decoder --------------------
|
| 423 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
| 424 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
| 425 |
+
|
| 426 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
| 427 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
| 428 |
+
|
| 429 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
| 430 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
| 431 |
+
|
| 432 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
| 433 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
| 434 |
+
|
| 435 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
#side output
|
| 439 |
+
d1 = self.side1(hx1d)
|
| 440 |
+
d1 = _upsample_like(d1,x)
|
| 441 |
+
|
| 442 |
+
d2 = self.side2(hx2d)
|
| 443 |
+
d2 = _upsample_like(d2,x)
|
| 444 |
+
|
| 445 |
+
d3 = self.side3(hx3d)
|
| 446 |
+
d3 = _upsample_like(d3,x)
|
| 447 |
+
|
| 448 |
+
d4 = self.side4(hx4d)
|
| 449 |
+
d4 = _upsample_like(d4,x)
|
| 450 |
+
|
| 451 |
+
d5 = self.side5(hx5d)
|
| 452 |
+
d5 = _upsample_like(d5,x)
|
| 453 |
+
|
| 454 |
+
d6 = self.side6(hx6)
|
| 455 |
+
d6 = _upsample_like(d6,x)
|
| 456 |
+
|
| 457 |
+
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)],[hx1d,hx2d,hx3d,hx4d,hx5d,hx6]
|
| 458 |
+
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "briaai/RMBG-1.4",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BriaRMBG"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "MyConfig.RMBGConfig",
|
| 8 |
+
"AutoModelForImageSegmentation": "briarmbg.BriaRMBG"
|
| 9 |
+
},
|
| 10 |
+
"custom_pipelines": {
|
| 11 |
+
"image-segmentation": {
|
| 12 |
+
"impl": "MyPipe.RMBGPipe",
|
| 13 |
+
"pt": [
|
| 14 |
+
"AutoModelForImageSegmentation"
|
| 15 |
+
],
|
| 16 |
+
"tf": [],
|
| 17 |
+
"type": "image"
|
| 18 |
+
}
|
| 19 |
+
},
|
| 20 |
+
"in_ch": 3,
|
| 21 |
+
"model_type": "SegformerForSemanticSegmentation",
|
| 22 |
+
"out_ch": 1,
|
| 23 |
+
"torch_dtype": "float32",
|
| 24 |
+
"transformers_version": "4.38.0.dev0"
|
| 25 |
+
}
|
example_inference.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from skimage import io
|
| 2 |
+
import torch, os
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from briarmbg import BriaRMBG
|
| 5 |
+
from utilities import preprocess_image, postprocess_image
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
|
| 8 |
+
def example_inference():
|
| 9 |
+
|
| 10 |
+
im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg"
|
| 11 |
+
|
| 12 |
+
net = BriaRMBG()
|
| 13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
|
| 15 |
+
net.to(device)
|
| 16 |
+
net.eval()
|
| 17 |
+
|
| 18 |
+
# prepare input
|
| 19 |
+
model_input_size = [1024,1024]
|
| 20 |
+
orig_im = io.imread(im_path)
|
| 21 |
+
orig_im_size = orig_im.shape[0:2]
|
| 22 |
+
image = preprocess_image(orig_im, model_input_size).to(device)
|
| 23 |
+
|
| 24 |
+
# inference
|
| 25 |
+
result=net(image)
|
| 26 |
+
|
| 27 |
+
# post process
|
| 28 |
+
result_image = postprocess_image(result[0][0], orig_im_size)
|
| 29 |
+
|
| 30 |
+
# save result
|
| 31 |
+
pil_im = Image.fromarray(result_image)
|
| 32 |
+
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
| 33 |
+
orig_image = Image.open(im_path)
|
| 34 |
+
no_bg_image.paste(orig_image, mask=pil_im)
|
| 35 |
+
no_bg_image.save("example_image_no_bg.png")
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
if __name__ == "__main__":
|
| 39 |
+
example_inference()
|
example_input.jpg
ADDED
|
model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:893c16c340b1ddafc93e78457a4d94190da9b7179149f8574284c83caebf5e8c
|
| 3 |
+
size 176718373
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:46ef7fe46f2ae284d8f1aaa24bfa5fca5ef25a34e2c7caa890a0029eb100e87f
|
| 3 |
+
size 176381984
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"do_pad": false,
|
| 4 |
+
"do_rescale": true,
|
| 5 |
+
"do_resize": true,
|
| 6 |
+
"image_mean": [
|
| 7 |
+
0.5,
|
| 8 |
+
0.5,
|
| 9 |
+
0.5
|
| 10 |
+
],
|
| 11 |
+
"feature_extractor_type": "ImageFeatureExtractor",
|
| 12 |
+
"image_std": [
|
| 13 |
+
1,
|
| 14 |
+
1,
|
| 15 |
+
1
|
| 16 |
+
],
|
| 17 |
+
"resample": 2,
|
| 18 |
+
"rescale_factor": 0.00392156862745098,
|
| 19 |
+
"size": {
|
| 20 |
+
"width": 1024,
|
| 21 |
+
"height": 1024
|
| 22 |
+
}
|
| 23 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:59569acdb281ac9fc9f78f9d33b6f9f17f68e25086b74f9025c35bb5f2848967
|
| 3 |
+
size 176574018
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
pillow
|
| 4 |
+
numpy
|
| 5 |
+
typing
|
| 6 |
+
scikit-image
|
| 7 |
+
huggingface_hub
|
| 8 |
+
transformers>=4.39.1
|
results.png
ADDED
|
Git LFS Details
|
t4.png
ADDED
|
Git LFS Details
|
utilities.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from torchvision.transforms.functional import normalize
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor:
|
| 7 |
+
if len(im.shape) < 3:
|
| 8 |
+
im = im[:, :, np.newaxis]
|
| 9 |
+
# orig_im_size=im.shape[0:2]
|
| 10 |
+
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
| 11 |
+
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear').type(torch.uint8)
|
| 12 |
+
image = torch.divide(im_tensor,255.0)
|
| 13 |
+
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
| 14 |
+
return image
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def postprocess_image(result: torch.Tensor, im_size: list)-> np.ndarray:
|
| 18 |
+
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0)
|
| 19 |
+
ma = torch.max(result)
|
| 20 |
+
mi = torch.min(result)
|
| 21 |
+
result = (result-mi)/(ma-mi)
|
| 22 |
+
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
|
| 23 |
+
im_array = np.squeeze(im_array)
|
| 24 |
+
return im_array
|
| 25 |
+
|