|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Processor class for Phi4MM | 
					
						
						|  | """ | 
					
						
						|  | import re | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  | import math | 
					
						
						|  | from enum import Enum | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import scipy | 
					
						
						|  | import torch | 
					
						
						|  | import torchvision | 
					
						
						|  |  | 
					
						
						|  | from transformers import AutoFeatureExtractor, AutoImageProcessor | 
					
						
						|  | from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor | 
					
						
						|  | from transformers.image_processing_utils import BaseImageProcessor, BatchFeature | 
					
						
						|  | from transformers.image_utils import ( | 
					
						
						|  | ImageInput, | 
					
						
						|  | make_list_of_images, | 
					
						
						|  | valid_images, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.processing_utils import ProcessorMixin | 
					
						
						|  | from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy | 
					
						
						|  | from transformers.utils import TensorType, logging | 
					
						
						|  | from torch.nn.utils.rnn import pad_sequence | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _COMPATIBLE_IMAGE_SPECIAL_TOKEN_PATTERN = r'<\|image_\d+\|>' | 
					
						
						|  | _COMPATIBLE_AUDIO_SPECIAL_TOKEN_PATTERN = r'<\|audio_\d+\|>' | 
					
						
						|  | _IMAGE_SPECIAL_TOKEN = '<|endoftext10|>' | 
					
						
						|  | _AUDIO_SPECIAL_TOKEN = '<|endoftext11|>' | 
					
						
						|  | _IMAGE_SPECIAL_TOKEN_ID = 200010 | 
					
						
						|  | _AUDIO_SPECIAL_TOKEN_ID = 200011 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InputMode(Enum): | 
					
						
						|  | LANGUAGE = 0 | 
					
						
						|  | VISION = 1 | 
					
						
						|  | SPEECH = 2 | 
					
						
						|  | VISION_SPEECH = 3 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMImageProcessor(BaseImageProcessor): | 
					
						
						|  | r""" | 
					
						
						|  | Constructs a Phi4MM image processor. | 
					
						
						|  | """ | 
					
						
						|  | model_input_names = ["input_image_embeds", "image_sizes", "image_attention_mask"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dynamic_hd, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  | self.dynamic_hd = dynamic_hd | 
					
						
						|  |  | 
					
						
						|  | def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): | 
					
						
						|  | best_ratio_diff = float('inf') | 
					
						
						|  | best_ratio = (1, 1) | 
					
						
						|  | area = width * height | 
					
						
						|  | for ratio in target_ratios: | 
					
						
						|  | target_aspect_ratio = ratio[0] / ratio[1] | 
					
						
						|  | ratio_diff = abs(aspect_ratio - target_aspect_ratio) | 
					
						
						|  | if ratio_diff < best_ratio_diff: | 
					
						
						|  | best_ratio_diff = ratio_diff | 
					
						
						|  | best_ratio = ratio | 
					
						
						|  | elif ratio_diff == best_ratio_diff: | 
					
						
						|  | if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | 
					
						
						|  | best_ratio = ratio | 
					
						
						|  | return best_ratio | 
					
						
						|  |  | 
					
						
						|  | def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=384, mask_size=27, use_thumbnail=True): | 
					
						
						|  | orig_width, orig_height = image.size | 
					
						
						|  |  | 
					
						
						|  | w_crop_num = math.ceil(orig_width/float(image_size)) | 
					
						
						|  | h_crop_num = math.ceil(orig_height/float(image_size)) | 
					
						
						|  | if w_crop_num * h_crop_num > max_num: | 
					
						
						|  |  | 
					
						
						|  | aspect_ratio = orig_width / orig_height | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | target_ratios = set( | 
					
						
						|  | (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | 
					
						
						|  | i * j <= max_num and i * j >= min_num) | 
					
						
						|  | target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | target_aspect_ratio = self.find_closest_aspect_ratio( | 
					
						
						|  | aspect_ratio, target_ratios, orig_width, orig_height, image_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | target_width = image_size * target_aspect_ratio[0] | 
					
						
						|  | target_height = image_size * target_aspect_ratio[1] | 
					
						
						|  | else: | 
					
						
						|  | target_width = image_size * w_crop_num | 
					
						
						|  | target_height = image_size * h_crop_num | 
					
						
						|  | target_aspect_ratio = (w_crop_num, h_crop_num) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ratio_width = target_width / orig_width | 
					
						
						|  | ratio_height = target_height / orig_height | 
					
						
						|  | if ratio_width < ratio_height: | 
					
						
						|  | new_size = (target_width, int(orig_height * ratio_width)) | 
					
						
						|  | padding_width = 0 | 
					
						
						|  | padding_height = target_height - int(orig_height * ratio_width) | 
					
						
						|  | else: | 
					
						
						|  | new_size = (int(orig_width * ratio_height), target_height) | 
					
						
						|  | padding_width = target_width - int(orig_width * ratio_height) | 
					
						
						|  | padding_height = 0 | 
					
						
						|  |  | 
					
						
						|  | attention_mask = torch.ones((int(mask_size*target_aspect_ratio[1]), int(mask_size*target_aspect_ratio[0]))) | 
					
						
						|  | if padding_width >= 14: | 
					
						
						|  | attention_mask[:, -math.floor(padding_width/14):] = 0 | 
					
						
						|  | if padding_height >= 14: | 
					
						
						|  | attention_mask[-math.floor(padding_height/14):,:] = 0 | 
					
						
						|  | assert attention_mask.sum() > 0 | 
					
						
						|  |  | 
					
						
						|  | if min(new_size[1], target_height) < 10 or min(new_size[0], target_width) < 10: | 
					
						
						|  | raise ValueError(f'the aspect ratio is very extreme {new_size}') | 
					
						
						|  |  | 
					
						
						|  | image = torchvision.transforms.functional.resize(image, [new_size[1], new_size[0]],) | 
					
						
						|  |  | 
					
						
						|  | resized_img = torchvision.transforms.functional.pad(image, [0, 0, padding_width, padding_height], fill=[255,255,255]) | 
					
						
						|  |  | 
					
						
						|  | return resized_img, attention_mask | 
					
						
						|  |  | 
					
						
						|  | def pad_to_max_num_crops(self, images, max_crops=5): | 
					
						
						|  | """ | 
					
						
						|  | images: B x 3 x H x W, B<=max_crops | 
					
						
						|  | """ | 
					
						
						|  | B, _, H, W = images.shape | 
					
						
						|  | if B < max_crops: | 
					
						
						|  | pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device) | 
					
						
						|  | images = torch.cat([images, pad], dim=0) | 
					
						
						|  | return images | 
					
						
						|  |  | 
					
						
						|  | def pad_mask_to_max_num_crops(self, masks, max_crops=5): | 
					
						
						|  | B, H, W = masks.shape | 
					
						
						|  | if B < max_crops: | 
					
						
						|  | pad = torch.ones(max_crops - B, H, W, dtype=masks.dtype, device=masks.device) | 
					
						
						|  | masks = torch.cat([masks, pad], dim=0) | 
					
						
						|  | return masks | 
					
						
						|  |  | 
					
						
						|  | def preprocess( | 
					
						
						|  | self, | 
					
						
						|  | images: ImageInput, | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | images (`ImageInput`): | 
					
						
						|  | Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | 
					
						
						|  | passing in images with pixel values between 0 and 1, set `do_rescale=False`. | 
					
						
						|  | return_tensors (`str` or `TensorType`, *optional*): | 
					
						
						|  | The type of tensors to return. Can be one of: | 
					
						
						|  | - Unset: Return a list of `np.ndarray`. | 
					
						
						|  | - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. | 
					
						
						|  | - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. | 
					
						
						|  | - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. | 
					
						
						|  | - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. | 
					
						
						|  | """ | 
					
						
						|  | images = make_list_of_images(images) | 
					
						
						|  |  | 
					
						
						|  | if not valid_images(images): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " | 
					
						
						|  | "torch.Tensor, tf.Tensor or jax.ndarray." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_processor = torchvision.transforms.Compose([ | 
					
						
						|  | torchvision.transforms.ToTensor(), | 
					
						
						|  | torchvision.transforms.Normalize( | 
					
						
						|  | (0.5, 0.5, 0.5), | 
					
						
						|  | (0.5, 0.5, 0.5) | 
					
						
						|  | ), | 
					
						
						|  | ]) | 
					
						
						|  | dyhd_base_resolution = 448 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | base_resolution = dyhd_base_resolution | 
					
						
						|  | images = [image.convert('RGB') for image in images] | 
					
						
						|  |  | 
					
						
						|  | mask_resolution = base_resolution // 14 | 
					
						
						|  | elems, image_attention_masks = [], [] | 
					
						
						|  | for im in images: | 
					
						
						|  | elem, attention_mask = self.dynamic_preprocess(im, max_num=self.dynamic_hd, image_size=base_resolution, mask_size=mask_resolution) | 
					
						
						|  | elems.append(elem) | 
					
						
						|  | image_attention_masks.append(attention_mask) | 
					
						
						|  | hd_images = [img_processor(im) for im in elems] | 
					
						
						|  | global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(base_resolution, base_resolution), mode='bicubic',).to(im.dtype) for im in hd_images] | 
					
						
						|  | shapes = [[im.size(1), im.size(2)] for im in hd_images] | 
					
						
						|  | mask_shapes = [[mask.size(0), mask.size(1)] for mask in image_attention_masks] | 
					
						
						|  | global_attention_mask = [torch.ones((1, mask_resolution, mask_resolution)) for _ in hd_images] | 
					
						
						|  | hd_images_reshape = [im.reshape(1, 3, | 
					
						
						|  | h//base_resolution, | 
					
						
						|  | base_resolution, | 
					
						
						|  | w//base_resolution, | 
					
						
						|  | base_resolution | 
					
						
						|  | ).permute(0,2,4,1,3,5).reshape(-1, 3, base_resolution, base_resolution).contiguous() for im, (h, w) in zip(hd_images, shapes)] | 
					
						
						|  | attention_masks_reshape = [mask.reshape(1, | 
					
						
						|  | h//mask_resolution, | 
					
						
						|  | mask_resolution, | 
					
						
						|  | w//mask_resolution, | 
					
						
						|  | mask_resolution | 
					
						
						|  | ).permute(0,1,3,2,4).reshape(-1, mask_resolution, mask_resolution).contiguous() for mask, (h, w) in zip(image_attention_masks, mask_shapes)] | 
					
						
						|  | downsample_attention_masks = [mask[:,0::2,0::2].reshape(1, | 
					
						
						|  | h//mask_resolution, | 
					
						
						|  | w//mask_resolution, | 
					
						
						|  | mask_resolution//2+mask_resolution%2, | 
					
						
						|  | mask_resolution//2+mask_resolution%2 | 
					
						
						|  | ).permute(0,1,3,2,4) for mask, (h,w) in zip(attention_masks_reshape, mask_shapes)] | 
					
						
						|  | downsample_attention_masks = [mask.reshape(mask.size(1)*mask.size(2), mask.size(3)*mask.size(4))for mask in downsample_attention_masks] | 
					
						
						|  | num_img_tokens = [256 + 1 + int(mask.sum().item()) + int(mask[:,0].sum().item()) + 16 for mask in downsample_attention_masks] | 
					
						
						|  |  | 
					
						
						|  | hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)] | 
					
						
						|  | hd_masks_reshape = [torch.cat([_global_mask] + [_mask], dim=0) for _global_mask, _mask in zip(global_attention_mask, attention_masks_reshape)] | 
					
						
						|  | max_crops = max([img.size(0) for img in hd_images_reshape]) | 
					
						
						|  | image_transformed = [self.pad_to_max_num_crops(im, max_crops) for im in hd_images_reshape] | 
					
						
						|  | image_transformed = torch.stack(image_transformed, dim=0) | 
					
						
						|  | mask_transformed = [self.pad_mask_to_max_num_crops(mask, max_crops) for mask in hd_masks_reshape] | 
					
						
						|  | mask_transformed = torch.stack(mask_transformed, dim=0) | 
					
						
						|  |  | 
					
						
						|  | returned_input_image_embeds = image_transformed | 
					
						
						|  | returned_image_sizes = torch.tensor(shapes, dtype=torch.long) | 
					
						
						|  | returned_image_attention_mask = mask_transformed | 
					
						
						|  | returned_num_img_tokens = num_img_tokens | 
					
						
						|  |  | 
					
						
						|  | data = { | 
					
						
						|  | "input_image_embeds": returned_input_image_embeds, | 
					
						
						|  | "image_sizes": returned_image_sizes, | 
					
						
						|  | "image_attention_mask": returned_image_attention_mask, | 
					
						
						|  | "num_img_tokens": returned_num_img_tokens, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | return BatchFeature(data=data, tensor_type=return_tensors) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | AudioInput = Tuple[Union[np.ndarray, torch.Tensor], int] | 
					
						
						|  | AudioInputs = List[AudioInput] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None): | 
					
						
						|  | """Create a Mel filter-bank the same as SpeechLib FbankFC. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | sample_rate (int): Sample rate in Hz. number > 0 [scalar] | 
					
						
						|  | n_fft (int): FFT size. int > 0 [scalar] | 
					
						
						|  | n_mel (int): Mel filter size. int > 0 [scalar] | 
					
						
						|  | fmin (float): lowest frequency (in Hz). If None use 0.0. | 
					
						
						|  | float >= 0 [scalar] | 
					
						
						|  | fmax: highest frequency (in Hz). If None use sample_rate / 2. | 
					
						
						|  | float >= 0 [scalar] | 
					
						
						|  |  | 
					
						
						|  | Returns | 
					
						
						|  | out (numpy.ndarray): Mel transform matrix | 
					
						
						|  | [shape=(n_mels, 1 + n_fft/2)] | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | bank_width = int(n_fft // 2 + 1) | 
					
						
						|  | if fmax is None: | 
					
						
						|  | fmax = sample_rate / 2 | 
					
						
						|  | if fmin is None: | 
					
						
						|  | fmin = 0 | 
					
						
						|  | assert fmin >= 0, "fmin cannot be negtive" | 
					
						
						|  | assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]" | 
					
						
						|  |  | 
					
						
						|  | def mel(f): | 
					
						
						|  | return 1127.0 * np.log(1.0 + f / 700.0) | 
					
						
						|  |  | 
					
						
						|  | def bin2mel(fft_bin): | 
					
						
						|  | return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0)) | 
					
						
						|  |  | 
					
						
						|  | def f2bin(f): | 
					
						
						|  | return int((f * n_fft / sample_rate) + 0.5) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | klo = f2bin(fmin) + 1 | 
					
						
						|  | khi = f2bin(fmax) | 
					
						
						|  |  | 
					
						
						|  | khi = max(khi, klo) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mlo = mel(fmin) | 
					
						
						|  | mhi = mel(fmax) | 
					
						
						|  | m_centers = np.linspace(mlo, mhi, n_mels + 2) | 
					
						
						|  | ms = (mhi - mlo) / (n_mels + 1) | 
					
						
						|  |  | 
					
						
						|  | matrix = np.zeros((n_mels, bank_width), dtype=np.float32) | 
					
						
						|  | for m in range(0, n_mels): | 
					
						
						|  | left = m_centers[m] | 
					
						
						|  | center = m_centers[m + 1] | 
					
						
						|  | right = m_centers[m + 2] | 
					
						
						|  | for fft_bin in range(klo, khi): | 
					
						
						|  | mbin = bin2mel(fft_bin) | 
					
						
						|  | if left < mbin < right: | 
					
						
						|  | matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms | 
					
						
						|  |  | 
					
						
						|  | return matrix | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMAudioFeatureExtractor(SequenceFeatureExtractor): | 
					
						
						|  | model_input_names = ["input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, audio_compression_rate, audio_downsample_rate, audio_feat_stride, **kwargs): | 
					
						
						|  | feature_size = 80 | 
					
						
						|  | sampling_rate = 16000 | 
					
						
						|  | padding_value = 0.0 | 
					
						
						|  | super().__init__(feature_size, sampling_rate, padding_value, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.compression_rate = audio_compression_rate | 
					
						
						|  | self.qformer_compression_rate = audio_downsample_rate | 
					
						
						|  | self.feat_stride = audio_feat_stride | 
					
						
						|  |  | 
					
						
						|  | self._eightk_method = "fillzero" | 
					
						
						|  | self._mel = speechlib_mel(16000, 512, 80, fmin=None, fmax=7690).T | 
					
						
						|  |  | 
					
						
						|  | self._hamming400 = np.hamming(400) | 
					
						
						|  | self._hamming200 = np.hamming(200) | 
					
						
						|  |  | 
					
						
						|  | def duration_to_frames(self, duration): | 
					
						
						|  | """duration in s, estimated frames""" | 
					
						
						|  | frame_rate = 10 | 
					
						
						|  |  | 
					
						
						|  | num_frames = duration * 1000 // frame_rate | 
					
						
						|  | return num_frames | 
					
						
						|  |  | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | audios: List[AudioInput], | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = None, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | returned_input_audio_embeds = [] | 
					
						
						|  | returned_audio_embed_sizes = [] | 
					
						
						|  | audio_frames_list = [] | 
					
						
						|  |  | 
					
						
						|  | for audio_data, sample_rate in audios: | 
					
						
						|  | audio_embeds = self._extract_features(audio_data, sample_rate) | 
					
						
						|  | audio_frames = len(audio_embeds) * self.feat_stride | 
					
						
						|  | audio_embed_size = self._compute_audio_embed_size(audio_frames) | 
					
						
						|  |  | 
					
						
						|  | returned_input_audio_embeds.append(torch.tensor(audio_embeds)) | 
					
						
						|  | returned_audio_embed_sizes.append(torch.tensor(audio_embed_size).long()) | 
					
						
						|  | audio_frames_list.append(audio_frames) | 
					
						
						|  |  | 
					
						
						|  | returned_input_audio_embeds = pad_sequence( | 
					
						
						|  | returned_input_audio_embeds, batch_first=True | 
					
						
						|  | ) | 
					
						
						|  | returned_audio_embed_sizes = torch.stack(returned_audio_embed_sizes, dim=0) | 
					
						
						|  | audio_frames = torch.tensor(audio_frames_list) | 
					
						
						|  | returned_audio_attention_mask = torch.arange(0, audio_frames.max()).unsqueeze(0) < audio_frames.unsqueeze(1) if len(audios) > 1 else None | 
					
						
						|  |  | 
					
						
						|  | data = { | 
					
						
						|  | "input_audio_embeds": returned_input_audio_embeds, | 
					
						
						|  | "audio_embed_sizes": returned_audio_embed_sizes, | 
					
						
						|  | } | 
					
						
						|  | if returned_audio_attention_mask is not None: | 
					
						
						|  | data["audio_attention_mask"] = returned_audio_attention_mask | 
					
						
						|  |  | 
					
						
						|  | return BatchFeature(data=data, tensor_type=return_tensors) | 
					
						
						|  |  | 
					
						
						|  | def _extract_spectrogram(self, wav, fs): | 
					
						
						|  | """Extract spectrogram features from waveform. | 
					
						
						|  | Args: | 
					
						
						|  | wav (1D array): waveform of the input | 
					
						
						|  | fs (int): sampling rate of the waveform, 16000 or 8000. | 
					
						
						|  | If fs=8000, the waveform will be resampled to 16000Hz. | 
					
						
						|  | Output: | 
					
						
						|  | log_fbank (2D array): a TxD matrix of log Mel filterbank features. | 
					
						
						|  | D=80, and T is the number of frames. | 
					
						
						|  | """ | 
					
						
						|  | if wav.ndim > 1: | 
					
						
						|  | wav = np.squeeze(wav) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(wav.shape) == 2: | 
					
						
						|  | wav = wav.mean(1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if fs > 16000: | 
					
						
						|  | wav = scipy.signal.resample_poly(wav, 1, fs // 16000) | 
					
						
						|  | fs = 16000 | 
					
						
						|  | elif 8000 < fs < 16000: | 
					
						
						|  | wav = scipy.signal.resample_poly(wav, 1, fs // 8000) | 
					
						
						|  | fs = 8000 | 
					
						
						|  | elif fs < 8000: | 
					
						
						|  | raise RuntimeError(f"Unsupported sample rate {fs}") | 
					
						
						|  |  | 
					
						
						|  | if fs == 8000: | 
					
						
						|  | if self._eightk_method == "resample": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | wav = scipy.signal.resample_poly(wav, 2, 1) | 
					
						
						|  | fs = 16000 | 
					
						
						|  |  | 
					
						
						|  | elif fs != 16000: | 
					
						
						|  |  | 
					
						
						|  | raise RuntimeError(f"Input data using an unsupported sample rate: {fs}") | 
					
						
						|  |  | 
					
						
						|  | preemphasis = 0.97 | 
					
						
						|  |  | 
					
						
						|  | if fs == 8000: | 
					
						
						|  | n_fft = 256 | 
					
						
						|  | win_length = 200 | 
					
						
						|  | hop_length = 80 | 
					
						
						|  | fft_window = self._hamming200 | 
					
						
						|  | elif fs == 16000: | 
					
						
						|  | n_fft = 512 | 
					
						
						|  | win_length = 400 | 
					
						
						|  | hop_length = 160 | 
					
						
						|  | fft_window = self._hamming400 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | n_batch = (wav.shape[0] - win_length) // hop_length + 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | y_frames = np.array( | 
					
						
						|  | [wav[_stride : _stride + win_length] for _stride in range(0, hop_length * n_batch, hop_length)], | 
					
						
						|  | dtype=np.float32, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | y_frames_prev = np.roll(y_frames, 1, axis=1) | 
					
						
						|  | y_frames_prev[:, 0] = y_frames_prev[:, 1] | 
					
						
						|  | y_frames = (y_frames - preemphasis * y_frames_prev) * 32768 | 
					
						
						|  |  | 
					
						
						|  | S = np.fft.rfft(fft_window * y_frames, n=n_fft, axis=1).astype(np.complex64) | 
					
						
						|  |  | 
					
						
						|  | if fs == 8000: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | frames, bins = S.shape | 
					
						
						|  | padarray = np.zeros((frames, bins)) | 
					
						
						|  | S = np.concatenate((S[:, 0:-1], padarray), axis=1) | 
					
						
						|  |  | 
					
						
						|  | spec = np.abs(S).astype(np.float32) | 
					
						
						|  | return spec | 
					
						
						|  |  | 
					
						
						|  | def _extract_features(self, wav, fs): | 
					
						
						|  | """Extract log filterbank features from waveform. | 
					
						
						|  | Args: | 
					
						
						|  | wav (1D array): waveform of the input | 
					
						
						|  | fs (int): sampling rate of the waveform, 16000 or 8000. | 
					
						
						|  | If fs=8000, the waveform will be resampled to 16000Hz. | 
					
						
						|  | Output: | 
					
						
						|  | log_fbank (2D array): a TxD matrix of log Mel filterbank features. | 
					
						
						|  | D=80, and T is the number of frames. | 
					
						
						|  | """ | 
					
						
						|  | spec = self._extract_spectrogram(wav, fs) | 
					
						
						|  | spec_power = spec**2 | 
					
						
						|  |  | 
					
						
						|  | fbank_power = np.clip(spec_power.dot(self._mel), 1.0, None) | 
					
						
						|  | log_fbank = np.log(fbank_power).astype(np.float32) | 
					
						
						|  |  | 
					
						
						|  | return log_fbank | 
					
						
						|  |  | 
					
						
						|  | def _compute_audio_embed_size(self, audio_frames): | 
					
						
						|  | integer = audio_frames // self.compression_rate | 
					
						
						|  | remainder = audio_frames % self.compression_rate | 
					
						
						|  |  | 
					
						
						|  | result = integer if remainder == 0 else integer + 1 | 
					
						
						|  |  | 
					
						
						|  | integer = result // self.qformer_compression_rate | 
					
						
						|  | remainder = result % self.qformer_compression_rate | 
					
						
						|  | result = integer if remainder == 0 else integer + 1 | 
					
						
						|  |  | 
					
						
						|  | return result | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4MMProcessor(ProcessorMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Constructs a Phi4MM processor which raps an image processor, a audio processor, and a GPT tokenizer into a single processor. | 
					
						
						|  |  | 
					
						
						|  | [`Phi4MMProcessor`] offers all the functionalities of [`Phi4MMImageProcessor`] and [`GPT2Tokenizer`]. See the | 
					
						
						|  | [`~Phi4MMProcessor.__call__`] and [`~Phi4MMProcessor.decode`] for more information. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | image_processor ([`Phi4MMImageProcessor`], *optional*): | 
					
						
						|  | The image processor is a required input. | 
					
						
						|  | tokenizer ([`GPT2Tokenizer`], *optional*): | 
					
						
						|  | The tokenizer is a required input. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | attributes = ["image_processor", "audio_processor", "tokenizer"] | 
					
						
						|  | tokenizer_class = "GPT2TokenizerFast" | 
					
						
						|  | image_processor_class = "AutoImageProcessor" | 
					
						
						|  | audio_processor_class = "AutoFeatureExtractor" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, image_processor, audio_processor, tokenizer): | 
					
						
						|  | self.image_processor = image_processor | 
					
						
						|  | self.audio_processor = audio_processor | 
					
						
						|  | self.tokenizer = tokenizer | 
					
						
						|  |  | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | text: Union[TextInput, List[TextInput]], | 
					
						
						|  | images: Optional[ImageInput] = None, | 
					
						
						|  | audios: Optional[AudioInputs] = None, | 
					
						
						|  | padding: Union[bool, str, PaddingStrategy] = False, | 
					
						
						|  | truncation: Optional[Union[bool, str, TruncationStrategy]] = None, | 
					
						
						|  | max_length=None, | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | 
					
						
						|  | ) -> BatchFeature: | 
					
						
						|  | """ | 
					
						
						|  | Main method to prepare for the model one or several sequences(s) and image(s). This method forards the `text` | 
					
						
						|  | and `kwargs` arguments to GPT2Tokenizer's [`~GPT2Tokenizer.__call__`] if `text` is not `None` to encode | 
					
						
						|  | the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | 
					
						
						|  | Phi4MMImageProcessor's [`~Phi4MMImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | 
					
						
						|  | of the above two methods for more information. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | text (`str`, `List[str]`, `List[List[str]]`): | 
					
						
						|  | The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | 
					
						
						|  | (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | 
					
						
						|  | `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | 
					
						
						|  | images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | 
					
						
						|  | The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | 
					
						
						|  | tensor. Both channels-first and channels-last formats are supported. | 
					
						
						|  | padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | 
					
						
						|  | Select a strategy to pad the returned sequences (according to the model's padding side and padding | 
					
						
						|  | index) among: | 
					
						
						|  | - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | 
					
						
						|  | sequence if provided). | 
					
						
						|  | - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | 
					
						
						|  | acceptable input length for the model if that argument is not provided. | 
					
						
						|  | - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | 
					
						
						|  | lengths). | 
					
						
						|  | max_length (`int`, *optional*): | 
					
						
						|  | Maximum length of the returned list and optionally padding length (see above). | 
					
						
						|  | truncation (`bool`, *optional*): | 
					
						
						|  | Activates truncation to cut input sequences longer than `max_length` to `max_length`. | 
					
						
						|  | return_tensors (`str` or [`~utils.TensorType`], *optional*): | 
					
						
						|  | If set, will return tensors of a particular framework. Acceptable values are: | 
					
						
						|  |  | 
					
						
						|  | - `'tf'`: Return TensorFlow `tf.constant` objects. | 
					
						
						|  | - `'pt'`: Return PyTorch `torch.Tensor` objects. | 
					
						
						|  | - `'np'`: Return NumPy `np.ndarray` objects. | 
					
						
						|  | - `'jax'`: Return JAX `jnp.ndarray` objects. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`BatchFeature`]: A [`BatchFeature`] with the following fields: | 
					
						
						|  |  | 
					
						
						|  | - **input_ids** -- List of token ids to be fed to a model. | 
					
						
						|  | - **input_image_embeds** -- Pixel values to be fed to a model. | 
					
						
						|  | - **image_sizes** -- List of tuples specifying the size of each image in `input_image_embeds`. | 
					
						
						|  | - **image_attention_mask** -- List of attention masks for each image in `input_image_embeds`. | 
					
						
						|  | - **input_audio_embeds** -- Audio embeddings to be fed to a model. | 
					
						
						|  | - **audio_embed_sizes** -- List of integers specifying the size of each audio in `input_audio_embeds`. | 
					
						
						|  | - **attention_mask** -- List of indices specifying which tokens should be attended to by the model. | 
					
						
						|  | """ | 
					
						
						|  | image_inputs = self.image_processor(images, return_tensors=return_tensors) if images is not None else {} | 
					
						
						|  | audio_inputs = self.audio_processor(audios, return_tensors=return_tensors) if audios is not None else {} | 
					
						
						|  | inputs = self._convert_images_audios_text_to_inputs( | 
					
						
						|  | image_inputs, | 
					
						
						|  | audio_inputs, | 
					
						
						|  | text, | 
					
						
						|  | padding=padding, | 
					
						
						|  | truncation=truncation, | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | return_tensors=return_tensors, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(image_inputs) > 0 and len(audio_inputs) > 0: | 
					
						
						|  | input_mode = InputMode.VISION_SPEECH | 
					
						
						|  | elif len(image_inputs) > 0: | 
					
						
						|  | input_mode = InputMode.VISION | 
					
						
						|  | elif len(audio_inputs) > 0: | 
					
						
						|  | input_mode = InputMode.SPEECH | 
					
						
						|  | else: | 
					
						
						|  | input_mode = InputMode.LANGUAGE | 
					
						
						|  | inputs["input_mode"] = torch.tensor([input_mode.value], dtype=torch.long) | 
					
						
						|  |  | 
					
						
						|  | return inputs | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def special_image_token_id(self): | 
					
						
						|  | return self.tokenizer.convert_tokens_to_ids(self.special_image_token) | 
					
						
						|  |  | 
					
						
						|  | def get_special_image_token_id(self): | 
					
						
						|  | return self.tokenizer.convert_tokens_to_ids(self.special_image_token) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def chat_template(self): | 
					
						
						|  | return self.tokenizer.chat_template | 
					
						
						|  |  | 
					
						
						|  | def _convert_images_audios_text_to_inputs( | 
					
						
						|  | self, images, audios, text, padding=False, truncation=None, max_length=None, return_tensors=None | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if len(images) > 0: | 
					
						
						|  | input_image_embeds = images["input_image_embeds"] | 
					
						
						|  | image_sizes = images["image_sizes"] | 
					
						
						|  | image_attention_mask = images["image_attention_mask"] | 
					
						
						|  | num_img_tokens = images['num_img_tokens'] | 
					
						
						|  | else: | 
					
						
						|  | input_image_embeds = torch.tensor([]) | 
					
						
						|  | image_sizes = torch.tensor([]) | 
					
						
						|  | image_attention_mask = torch.tensor([]) | 
					
						
						|  | num_img_tokens = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(audios) > 0: | 
					
						
						|  | input_audio_embeds = audios["input_audio_embeds"] | 
					
						
						|  | audio_embed_sizes = audios["audio_embed_sizes"] | 
					
						
						|  | audio_attention_mask = audios.get("audio_attention_mask", None) | 
					
						
						|  | else: | 
					
						
						|  | input_audio_embeds = torch.tensor([]) | 
					
						
						|  | audio_embed_sizes = torch.tensor([]) | 
					
						
						|  | audio_attention_mask = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(text, str): | 
					
						
						|  | text = [text] | 
					
						
						|  | assert isinstance(text, list) | 
					
						
						|  | processed_text = [re.sub(_COMPATIBLE_IMAGE_SPECIAL_TOKEN_PATTERN, _IMAGE_SPECIAL_TOKEN, t) for t in text] | 
					
						
						|  | processed_text = [re.sub(_COMPATIBLE_AUDIO_SPECIAL_TOKEN_PATTERN, _AUDIO_SPECIAL_TOKEN, t) for t in processed_text] | 
					
						
						|  |  | 
					
						
						|  | input_ids_list = [self.tokenizer(t).input_ids for t in processed_text] | 
					
						
						|  |  | 
					
						
						|  | img_cnt, audio_cnt = 0, 0 | 
					
						
						|  | image_token_count_iter = iter(num_img_tokens) | 
					
						
						|  | audio_embed_size_iter = iter(audio_embed_sizes.tolist()) | 
					
						
						|  | new_input_ids_list = [] | 
					
						
						|  | for input_ids in input_ids_list: | 
					
						
						|  | i = 0 | 
					
						
						|  | while i < len(input_ids): | 
					
						
						|  | token_id = input_ids[i] | 
					
						
						|  | if token_id == _AUDIO_SPECIAL_TOKEN_ID: | 
					
						
						|  | token_count = next(audio_embed_size_iter) | 
					
						
						|  | audio_cnt += 1 | 
					
						
						|  | elif token_id == _IMAGE_SPECIAL_TOKEN_ID: | 
					
						
						|  | token_count = next(image_token_count_iter) | 
					
						
						|  | img_cnt += 1 | 
					
						
						|  | else: | 
					
						
						|  | i += 1 | 
					
						
						|  | continue | 
					
						
						|  | tokens = [token_id] * token_count | 
					
						
						|  | input_ids = input_ids[:i] + tokens + input_ids[i + 1:] | 
					
						
						|  | i += token_count | 
					
						
						|  | input_ids = torch.tensor(input_ids, dtype=torch.long) | 
					
						
						|  | new_input_ids_list.append(input_ids) | 
					
						
						|  | lengths = torch.tensor([len(input_ids) for input_ids in new_input_ids_list]) | 
					
						
						|  | max_len = lengths.max() | 
					
						
						|  | input_ids = input_ids.new_full((len(new_input_ids_list), max_len), self.tokenizer.pad_token_id) | 
					
						
						|  |  | 
					
						
						|  | for i in range(len(new_input_ids_list)): | 
					
						
						|  | input_ids[i, max_len - len(new_input_ids_list[i]):] = new_input_ids_list[i] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | img_cnt == len(num_img_tokens) | 
					
						
						|  | ), ( | 
					
						
						|  | f"Number of image tokens in prompt_token_ids ({img_cnt}) " | 
					
						
						|  | f"does not match number of images ({len(num_img_tokens)})" | 
					
						
						|  | ) | 
					
						
						|  | assert ( | 
					
						
						|  | audio_cnt == len(audio_embed_sizes) | 
					
						
						|  | ), ( | 
					
						
						|  | f"Number of audio tokens in prompt_token_ids ({audio_cnt}) " | 
					
						
						|  | f"does not match number of audios ({len(audio_embed_sizes)})" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | seq_range = torch.arange(max_len - 1, -1, -1) | 
					
						
						|  | attention_mask = seq_range.unsqueeze(0) < lengths.unsqueeze(1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | data = { | 
					
						
						|  | "input_ids": input_ids, | 
					
						
						|  | "input_image_embeds": input_image_embeds, | 
					
						
						|  | "image_sizes": image_sizes, | 
					
						
						|  | "image_attention_mask": image_attention_mask, | 
					
						
						|  | "input_audio_embeds": input_audio_embeds, | 
					
						
						|  | "audio_embed_sizes": audio_embed_sizes, | 
					
						
						|  | "audio_attention_mask": audio_attention_mask, | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | return BatchFeature( | 
					
						
						|  | data=data | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def batch_decode(self, *args, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please | 
					
						
						|  | refer to the docstring of this method for more information. | 
					
						
						|  | """ | 
					
						
						|  | return self.tokenizer.batch_decode(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def decode(self, *args, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to | 
					
						
						|  | the docstring of this method for more information. | 
					
						
						|  | """ | 
					
						
						|  | return self.tokenizer.decode(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  |  | 
					
						
						|  | def model_input_names(self): | 
					
						
						|  | tokenizer_input_names = self.tokenizer.model_input_names | 
					
						
						|  | image_processor_input_names = self.image_processor.model_input_names | 
					
						
						|  | audio_processor_input_names = self.audio_processor.model_input_names | 
					
						
						|  | return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + audio_processor_input_names)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | AutoImageProcessor.register("Phi4MMImageProcessor", Phi4MMImageProcessor) | 
					
						
						|  | AutoFeatureExtractor.register("Phi4MMAudioFeatureExtractor", Phi4MMAudioFeatureExtractor) | 
					
						
						|  |  |