blumenstiel commited on
Commit
9eb1b11
·
verified ·
1 Parent(s): b2f2520

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -0
README.md CHANGED
@@ -27,6 +27,8 @@ Second, we considered geolocation (center latitude and longitude) and date of ac
27
 
28
  | Model | Details | Weights |
29
  | ------------- | ------------- |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
 
 
30
  |Prithvi-EO-2.0-300M | Pretrained 300M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M) |
31
  |Prithvi-EO-2.0-300M-TL | Pretrained 300M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL) |
32
  |Prithvi-EO-2.0-600M | Pretrained 600M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M) | |
@@ -57,7 +59,14 @@ Example Notebooks:
57
  [Landslide Segmentation](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_landslide4sense.ipynb) [<b><i>>>Try it on Colab<<</i></b>](https://colab.research.google.com/github/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_landslide4sense.ipynb) (Choose T4 GPU runtime)
58
  [Carbon Flux Prediction (Regression)](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/carbon_flux/main_flux_finetune_baselines_trainer.ipynb)
59
 
 
 
 
60
 
 
 
 
 
61
 
62
  ### Feedback
63
 
 
27
 
28
  | Model | Details | Weights |
29
  | ------------- | ------------- |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
30
+ | Prithvi-EO-2.0-tiny-TL | Pretrained 5M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-tiny-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-tiny-TL) |
31
+ | Prithvi-EO-2.0-100M-TL | Pretrained 100M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-100M-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-100M-TL) |
32
  |Prithvi-EO-2.0-300M | Pretrained 300M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M) |
33
  |Prithvi-EO-2.0-300M-TL | Pretrained 300M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL) |
34
  |Prithvi-EO-2.0-600M | Pretrained 600M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M) | |
 
59
  [Landslide Segmentation](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_landslide4sense.ipynb) [<b><i>>>Try it on Colab<<</i></b>](https://colab.research.google.com/github/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_landslide4sense.ipynb) (Choose T4 GPU runtime)
60
  [Carbon Flux Prediction (Regression)](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/carbon_flux/main_flux_finetune_baselines_trainer.ipynb)
61
 
62
+ If you plan to use Prithvi in your custom PyTorch pipeline, you can build the backbone with:
63
+ ```python
64
+ from terratorch.registry import BACKBONE_REGISTRY
65
 
66
+ model = BACKBONE_REGISTRY.build("prithvi_eo_v2_tiny_tl", pretrained=True)
67
+ ```
68
+
69
+ Find more information on model usage in our [Prithvi Docs](https://ibm.github.io/terratorch/stable/guide/prithvi_eo/).
70
 
71
  ### Feedback
72