Update README.md
Browse files
README.md
CHANGED
|
@@ -27,6 +27,8 @@ Second, we considered geolocation (center latitude and longitude) and date of ac
|
|
| 27 |
|
| 28 |
| Model | Details | Weights |
|
| 29 |
| ------------- | ------------- |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
|
|
|
|
|
| 30 |
|Prithvi-EO-2.0-300M | Pretrained 300M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M) |
|
| 31 |
|Prithvi-EO-2.0-300M-TL | Pretrained 300M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL) |
|
| 32 |
|Prithvi-EO-2.0-600M | Pretrained 600M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M) | |
|
|
@@ -57,7 +59,14 @@ Example Notebooks:
|
|
| 57 |
[Landslide Segmentation](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_landslide4sense.ipynb) [<b><i>>>Try it on Colab<<</i></b>](https://colab.research.google.com/github/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_landslide4sense.ipynb) (Choose T4 GPU runtime)
|
| 58 |
[Carbon Flux Prediction (Regression)](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/carbon_flux/main_flux_finetune_baselines_trainer.ipynb)
|
| 59 |
|
|
|
|
|
|
|
|
|
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
### Feedback
|
| 63 |
|
|
|
|
| 27 |
|
| 28 |
| Model | Details | Weights |
|
| 29 |
| ------------- | ------------- |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 30 |
+
| Prithvi-EO-2.0-tiny-TL | Pretrained 5M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-tiny-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-tiny-TL) |
|
| 31 |
+
| Prithvi-EO-2.0-100M-TL | Pretrained 100M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-100M-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-100M-TL) |
|
| 32 |
|Prithvi-EO-2.0-300M | Pretrained 300M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M) |
|
| 33 |
|Prithvi-EO-2.0-300M-TL | Pretrained 300M parameter model with temporal and location embeddings | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL) |
|
| 34 |
|Prithvi-EO-2.0-600M | Pretrained 600M parameter model | [https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-600M) | |
|
|
|
|
| 59 |
[Landslide Segmentation](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_landslide4sense.ipynb) [<b><i>>>Try it on Colab<<</i></b>](https://colab.research.google.com/github/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/example_landslide4sense.ipynb) (Choose T4 GPU runtime)
|
| 60 |
[Carbon Flux Prediction (Regression)](https://github.com/NASA-IMPACT/Prithvi-EO-2.0/blob/main/examples/carbon_flux/main_flux_finetune_baselines_trainer.ipynb)
|
| 61 |
|
| 62 |
+
If you plan to use Prithvi in your custom PyTorch pipeline, you can build the backbone with:
|
| 63 |
+
```python
|
| 64 |
+
from terratorch.registry import BACKBONE_REGISTRY
|
| 65 |
|
| 66 |
+
model = BACKBONE_REGISTRY.build("prithvi_eo_v2_tiny_tl", pretrained=True)
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
Find more information on model usage in our [Prithvi Docs](https://ibm.github.io/terratorch/stable/guide/prithvi_eo/).
|
| 70 |
|
| 71 |
### Feedback
|
| 72 |
|