Upload model
Browse files- README.md +76 -0
- config.json +38 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
- vocab.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
tags:
|
| 4 |
+
- exbert
|
| 5 |
+
license: mit
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
# ColD Fusion model
|
| 9 |
+
|
| 10 |
+
Finetuned model that aims to be a great base model. It improves over RoBERTa base, trained on 35 datasets.
|
| 11 |
+
Full details at [this paper](https://arxiv.org/abs/2212.01378).
|
| 12 |
+
|
| 13 |
+
## Paper Abstract:
|
| 14 |
+
|
| 15 |
+
Pretraining has been shown to scale well with compute, data size and data diversity. Multitask learning trains on a
|
| 16 |
+
mixture of supervised datasets and produces improved performance compared to self-supervised pretraining. Until now,
|
| 17 |
+
massively multitask learning required simultaneous access to all datasets in the mixture and heavy compute resources
|
| 18 |
+
that are only available to well-resourced teams.
|
| 19 |
+
|
| 20 |
+
In this paper, we propose ColD Fusion, a method that provides the benefits of multitask learning but leverages distributed
|
| 21 |
+
computation and requires limited communication and no sharing of data. Consequentially, ColD Fusion can create a synergistic
|
| 22 |
+
loop, where finetuned models can be recycled to continually improve the pretrained model they are based on. We show that
|
| 23 |
+
ColD Fusion yields comparable benefits to multitask pretraining by producing a model that (a) attains strong performance on
|
| 24 |
+
all of the datasets it was multitask trained on and (b) is a better starting point for finetuning on unseen datasets. We find
|
| 25 |
+
ColD Fusion outperforms RoBERTa and even previous multitask models. Specifically, when training and testing on 35 diverse datasets,
|
| 26 |
+
ColD Fusion-based model outperforms RoBERTa by 2.45 points in average without any changes to the architecture.
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
### How to use
|
| 30 |
+
Best way to use is to finetune on your own task, but you can also extract features directly.
|
| 31 |
+
To get the features of a given text in PyTorch:
|
| 32 |
+
|
| 33 |
+
```python
|
| 34 |
+
from transformers import RobertaTokenizer, RobertaModel
|
| 35 |
+
tokenizer = RobertaTokenizer.from_pretrained('ibm/ColD-Fusion')
|
| 36 |
+
model = RobertaModel.from_pretrained('ibm/ColD-Fusion')
|
| 37 |
+
text = "Replace me by any text you'd like."
|
| 38 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 39 |
+
output = model(**encoded_input)
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
and in TensorFlow:
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
from transformers import RobertaTokenizer, TFRobertaModel
|
| 46 |
+
tokenizer = RobertaTokenizer.from_pretrained('ibm/ColD-Fusion')
|
| 47 |
+
model = TFRobertaModel.from_pretrained('ibm/ColD-Fusion')
|
| 48 |
+
text = "Replace me by any text you'd like."
|
| 49 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
| 50 |
+
output = model(encoded_input)
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
## Evaluation results
|
| 54 |
+
See full evaluation results of this model and many more [here](https://ibm.github.io/model-recycling/roberta-base_table.html)
|
| 55 |
+
When fine-tuned on downstream tasks, this model achieves the following results:
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
### BibTeX entry and citation info
|
| 60 |
+
|
| 61 |
+
```bibtex
|
| 62 |
+
@article{ColDFusion,
|
| 63 |
+
author = {Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, Leshem ChoshenYinhan Liu and},
|
| 64 |
+
title = {ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning},
|
| 65 |
+
journal = {CoRR},
|
| 66 |
+
volume = {abs/2212.01378},
|
| 67 |
+
year = {2022},
|
| 68 |
+
url = {https://arxiv.org/abs/2212.01378},
|
| 69 |
+
archivePrefix = {arXiv},
|
| 70 |
+
eprint = {2212.01378},
|
| 71 |
+
}
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
<a href="https://huggingface.co/exbert/?model=ibm/ColD-Fusion">
|
| 75 |
+
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
|
| 76 |
+
</a>
|
config.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "roberta-base",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"RobertaForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"id2label": {
|
| 14 |
+
"0": "LABEL_0",
|
| 15 |
+
"1": "LABEL_1",
|
| 16 |
+
"2": "LABEL_2"
|
| 17 |
+
},
|
| 18 |
+
"initializer_range": 0.02,
|
| 19 |
+
"intermediate_size": 3072,
|
| 20 |
+
"label2id": {
|
| 21 |
+
"LABEL_0": 0,
|
| 22 |
+
"LABEL_1": 1,
|
| 23 |
+
"LABEL_2": 2
|
| 24 |
+
},
|
| 25 |
+
"layer_norm_eps": 1e-05,
|
| 26 |
+
"max_position_embeddings": 514,
|
| 27 |
+
"model_type": "roberta",
|
| 28 |
+
"num_attention_heads": 12,
|
| 29 |
+
"num_hidden_layers": 12,
|
| 30 |
+
"pad_token_id": 1,
|
| 31 |
+
"position_embedding_type": "absolute",
|
| 32 |
+
"problem_type": "single_label_classification",
|
| 33 |
+
"torch_dtype": "float32",
|
| 34 |
+
"transformers_version": "4.21.0",
|
| 35 |
+
"type_vocab_size": 1,
|
| 36 |
+
"use_cache": true,
|
| 37 |
+
"vocab_size": 50265
|
| 38 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d21d4d22ebd2ab3b1a7aac09e42ad4ea7e7e35e4a7af0a3744f3cc2c5868df7b
|
| 3 |
+
size 498660589
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"bos_token": "<s>",
|
| 4 |
+
"cls_token": "<s>",
|
| 5 |
+
"eos_token": "</s>",
|
| 6 |
+
"errors": "replace",
|
| 7 |
+
"mask_token": "<mask>",
|
| 8 |
+
"model_max_length": 512,
|
| 9 |
+
"name_or_path": "roberta-base",
|
| 10 |
+
"pad_token": "<pad>",
|
| 11 |
+
"sep_token": "</s>",
|
| 12 |
+
"special_tokens_map_file": null,
|
| 13 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 14 |
+
"trim_offsets": true,
|
| 15 |
+
"unk_token": "<unk>"
|
| 16 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|