Update with README
Browse files
README.md
CHANGED
|
@@ -1,199 +1,147 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
|
|
|
| 9 |
|
|
|
|
|
|
|
| 10 |
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
##
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
###
|
| 41 |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
###
|
| 53 |
|
| 54 |
-
|
| 55 |
|
| 56 |
-
[More Information Needed]
|
| 57 |
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
| 61 |
|
| 62 |
-
[More Information Needed]
|
| 63 |
|
| 64 |
-
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- gpt
|
| 5 |
+
- distillation
|
| 6 |
+
- mobile
|
| 7 |
+
- embedded
|
| 8 |
+
- onnx
|
| 9 |
+
license: cc-by-nc-4.0
|
| 10 |
+
datasets:
|
| 11 |
+
- custom
|
| 12 |
+
- web
|
| 13 |
+
language: en
|
| 14 |
+
widget:
|
| 15 |
+
- text: "In order to make pancakes, you need to"
|
| 16 |
+
- text: "Once upon a time"
|
| 17 |
---
|
| 18 |
|
| 19 |
+
<p align="center">
|
| 20 |
+
<img src="logo.png" alt="IJK Technology" width="150">
|
| 21 |
+
</p>
|
| 22 |
+
|
| 23 |
+
<h1 align="center">IJK Technology – ByteGPT-r1</h1>
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
**ByteGPT-r1** is a distilled version of DeepSeek's QWEN 1.5B model, optimized specifically for mobile and edge computing environments. It maintains impressive language capabilities while being designed for compute- and memory-constrained devices.
|
| 27 |
+
|
| 28 |
+
## 🚀 Overview
|
| 29 |
+
- **Model Type:** Distilled GPT-style causal language model
|
| 30 |
+
- **Base Model:** DeepSeek's QWEN 1.5B
|
| 31 |
+
- **Intended Use:** Edge devices, mobile phones, embedded systems
|
| 32 |
+
- **Size:** Optimized for mobile deployment
|
| 33 |
+
- **Training:** Knowledge distillation from QWEN 1.5B
|
| 34 |
+
|
| 35 |
+
## 🧠 Why ByteGPT-r1?
|
| 36 |
+
ByteGPT-r1 offers several advantages for mobile and edge deployment:
|
| 37 |
|
| 38 |
+
1. **Efficient Knowledge Distillation:**
|
| 39 |
+
Carefully distilled from DeepSeek's QWEN 1.5B model to preserve capabilities while reducing computational requirements.
|
| 40 |
|
| 41 |
+
2. **Mobile-First Design:**
|
| 42 |
+
Architected specifically for the constraints of mobile devices, with optimizations for both inference speed and memory usage.
|
| 43 |
|
| 44 |
+
3. **Balanced Performance:**
|
| 45 |
+
Maintains a good balance between model size and language generation capabilities, making it practical for real-world mobile applications.
|
| 46 |
|
| 47 |
+
## 💡 Future Plans
|
| 48 |
+
This model is part of our ongoing effort to bring powerful language models to edge devices. Upcoming releases will include:
|
| 49 |
|
| 50 |
+
- **Specialized Variants:** Domain-specific versions optimized for particular use cases
|
| 51 |
+
- **Further Optimizations:** Continued improvements in efficiency and performance
|
| 52 |
+
- **Benchmark Results:** Comparative performance on various mobile devices
|
| 53 |
+
- **Integration Examples:** More code samples for popular mobile frameworks
|
| 54 |
|
| 55 |
+
## 💻 Usage
|
| 56 |
|
| 57 |
+
### **Quick Start (with `transformers`):**
|
| 58 |
+
```python
|
| 59 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 60 |
|
| 61 |
+
model = AutoModelForCausalLM.from_pretrained("ijktech/ByteGPT-r1", trust_remote_code=True)
|
| 62 |
+
tokenizer = AutoTokenizer.from_pretrained("ijktech/ByteGPT-r1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
input_text = "What is the capital of France?"
|
| 65 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 66 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 67 |
|
| 68 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 69 |
+
```
|
| 70 |
|
| 71 |
+
### Tokenizer
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
The tokenizer is compatible with AutoTokenizer from Hugging Face:
|
| 74 |
|
| 75 |
+
```python
|
| 76 |
+
tokenizer = AutoTokenizer.from_pretrained("ijktech/ByteGPT-r1")
|
| 77 |
+
```
|
| 78 |
|
| 79 |
+
### ONNX
|
| 80 |
|
| 81 |
+
The model is also available in ONNX format, and can be used with the ONNX Runtime:
|
| 82 |
|
| 83 |
+
```python
|
| 84 |
+
import onnxruntime as ort
|
| 85 |
+
import numpy as np
|
| 86 |
|
| 87 |
+
# Create ONNX Runtime session
|
| 88 |
+
ort_session = ort.InferenceSession("model.onnx")
|
| 89 |
|
| 90 |
+
# Helper function to generate text using the ONNX model
|
| 91 |
+
def generate_with_onnx(prompt_ids, max_new_tokens=50, temperature=1.0):
|
| 92 |
+
input_ids = prompt_ids.clone()
|
| 93 |
+
|
| 94 |
+
for _ in range(max_new_tokens):
|
| 95 |
+
# Get the last block_size tokens if input is too long
|
| 96 |
+
if input_ids.shape[1] > model.block_size:
|
| 97 |
+
input_ids = input_ids[:, -model.block_size:]
|
| 98 |
+
|
| 99 |
+
# Run inference
|
| 100 |
+
ort_inputs = {
|
| 101 |
+
'input': input_ids.cpu().numpy()
|
| 102 |
+
}
|
| 103 |
+
logits = ort_session.run(None, ort_inputs)[0]
|
| 104 |
+
|
| 105 |
+
# Get predictions for the next token
|
| 106 |
+
logits = torch.from_numpy(logits)
|
| 107 |
+
logits = logits[:, -1, :] # Only take the last token's predictions
|
| 108 |
+
|
| 109 |
+
# Apply temperature
|
| 110 |
+
if temperature != 1.0:
|
| 111 |
+
logits = logits / temperature
|
| 112 |
+
|
| 113 |
+
# Sample from the distribution
|
| 114 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 115 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 116 |
+
|
| 117 |
+
# Append the new token
|
| 118 |
+
input_ids = torch.cat([input_ids, next_token], dim=1)
|
| 119 |
+
|
| 120 |
+
return input_ids
|
| 121 |
|
| 122 |
+
# Test the generation
|
| 123 |
+
prompt = "Hello"
|
| 124 |
+
prompt_ids = tok(prompt, return_tensors="pt")["input_ids"]
|
| 125 |
+
generated_ids = generate_with_onnx(prompt_ids)
|
| 126 |
+
generated_text = tok.decode(generated_ids[0], skip_special_tokens=True)
|
| 127 |
+
print(f"Generated text: {generated_text}")
|
| 128 |
+
#Generated text: Hello there! How can I assist you today? I'm a helpful AI assistant trained to provide information and answer questions on a wide range of topics.
|
| 129 |
+
```
|
| 130 |
|
| 131 |
+
### Android Usage
|
| 132 |
|
| 133 |
+
Coming Soon!
|
| 134 |
|
|
|
|
| 135 |
|
| 136 |
+
### iOS Usage
|
| 137 |
|
| 138 |
+
Coming Soon!
|
| 139 |
|
|
|
|
| 140 |
|
| 141 |
+
## 📜 License
|
| 142 |
+
📍 **CC-BY-NC-4.0**: Free for non-commercial use.
|
| 143 |
|
| 144 |
+
💼 **Commercial Use**: Contact IJK Technology Ltd for licensing at [james@ijktech.com](mailto:[email protected]).
|
| 145 |
|
| 146 |
+
## 🛠️ About IJK Technology Ltd
|
| 147 |
+
IJK Technology Ltd (IJKTech) develops innovative machine learning models optimized for on-device inference. Our focus is on efficiency, privacy, and usability across mobile and embedded platforms.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|