File size: 2,854 Bytes
0adb9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e18b86
0adb9b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
datasets:
- maydogan/Turkish_SentimentAnalysis_TRSAv1
language:
- tr
metrics:
- accuracy
- precision
- recall
- f1
base_model:
- google-bert/bert-base-multilingual-cased
pipeline_tag: text-classification
tags:
- Turkish Sentiment Analysis
---
# 🇹🇷 BERTurk for Turkish Sentiment Analysis
This model is a fine-tuned version of [mBERT](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the [TRSAv1 dataset](https://huggingface.co/maydogan/Turkish_SentimentAnalysis_TRSAv1), a labeled collection of Turkish e-commerce reviews categorized into positive, neutral, and negative sentiments. For more details about the dataset, methodology, and experiments, you can refer to the corresponding [research paper](https://dergipark.org.tr/en/pub/ejt/issue/92270/1592448).

---
## How to Use

You can use the model directly with 🤗 Transformers:

```python
from transformers import pipeline

classifier = pipeline("text-classification", model="incidelen/bert-base-multilingual-turkish-sentiment-analysis-cased")
result = classifier("Ürün çok kaliteli, paketleme harikaydı. Kesinlikle tavsiye ederim!")
print(result)
```
---
## Citation
If you use this model in your research or application, please cite the following paper:

```
@article{incidelen15sentiment,
  title={Sentiment Analysis in Turkish Using Language Models: A Comparative Study},
  author={{\.I}ncidelen, Mert and Aydo{\u{g}}an, Murat},
  journal={European Journal of Technique (EJT)},
  volume={15},
  number={1},
  pages={68--74},
  publisher={Hibetullah KILI{\c{C}}}
}
```
---
## Dataset Overview
The [TRSAv1 dataset](https://huggingface.co/maydogan/Turkish_SentimentAnalysis_TRSAv1) includes 150,000 Turkish product reviews from e-commerce platforms. It is balanced across three sentiment classes:

| Sentiment    | Count                 |
|--------------|-----------------------|
| Negative     | 50,000                |
| Neutral      | 50,000                |
| Positive     | 50,000                |
| TOTAL        | 150,000               |

---
## Evaluation Results
### Overall Performance
| Accuracy (%)    | Precision (%)    | Recall (%)      | F1 Score (%)      |
|-----------------|------------------|-----------------|-------------------|
| 81.86           | 82.00            | 81.86           | 81.89             |
### Class-wise Performance
| Sentiment       | Precision (%)    | Recall (%)      | F1 Score (%)      |
|-----------------|------------------|-----------------|-------------------|
| Negative        | 87.79            | 82.36           | 84.99             |
| Neutral         | 74.20            | 75.69           | 74.94             |
| Positive        | 84.03            | 87.54           | 85.75             |

---
## Acknowledgments
Special thanks to [maydogan](https://huggingface.co/maydogan) for their contributions and support.

---