Create README.md
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,72 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            datasets:
         | 
| 3 | 
            +
            - maydogan/Turkish_SentimentAnalysis_TRSAv1
         | 
| 4 | 
            +
            language:
         | 
| 5 | 
            +
            - tr
         | 
| 6 | 
            +
            metrics:
         | 
| 7 | 
            +
            - accuracy
         | 
| 8 | 
            +
            - precision
         | 
| 9 | 
            +
            - recall
         | 
| 10 | 
            +
            - f1
         | 
| 11 | 
            +
            base_model:
         | 
| 12 | 
            +
            - dbmdz/bert-base-turkish-128k-cased
         | 
| 13 | 
            +
            pipeline_tag: text-classification
         | 
| 14 | 
            +
            tags:
         | 
| 15 | 
            +
            - Turkish Sentiment Analysis
         | 
| 16 | 
            +
            ---
         | 
| 17 | 
            +
            # 🇹🇷 BERTurk for Turkish Sentiment Analysis
         | 
| 18 | 
            +
            This model is a fine-tuned version of [BERTurk 32k](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the [TRSAv1 dataset](https://huggingface.co/maydogan/Turkish_SentimentAnalysis_TRSAv1), a labeled collection of Turkish e-commerce reviews categorized into positive, neutral, and negative sentiments. For more details about the dataset, methodology, and experiments, you can refer to the corresponding [research paper](https://dergipark.org.tr/en/pub/ejt/issue/92270/1592448).
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            ---
         | 
| 21 | 
            +
            ## How to Use
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            You can use the model directly with 🤗 Transformers:
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            ```python
         | 
| 26 | 
            +
            from transformers import pipeline
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            classifier = pipeline("text-classification", model="incidelen/bert-base-turkish-sentiment-analysis-cased")
         | 
| 29 | 
            +
            result = classifier("Ürün çok kaliteli, paketleme harikaydı. Kesinlikle tavsiye ederim!")
         | 
| 30 | 
            +
            print(result)
         | 
| 31 | 
            +
            ```
         | 
| 32 | 
            +
            ---
         | 
| 33 | 
            +
            ## Citation
         | 
| 34 | 
            +
            If you use this model in your research or application, please cite the following paper:
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            ```
         | 
| 37 | 
            +
            @article{incidelen15sentiment,
         | 
| 38 | 
            +
              title={Sentiment Analysis in Turkish Using Language Models: A Comparative Study},
         | 
| 39 | 
            +
              author={{\.I}ncidelen, Mert and Aydo{\u{g}}an, Murat},
         | 
| 40 | 
            +
              journal={European Journal of Technique (EJT)},
         | 
| 41 | 
            +
              volume={15},
         | 
| 42 | 
            +
              number={1},
         | 
| 43 | 
            +
              pages={68--74},
         | 
| 44 | 
            +
              publisher={Hibetullah KILI{\c{C}}}
         | 
| 45 | 
            +
            }
         | 
| 46 | 
            +
            ```
         | 
| 47 | 
            +
            ---
         | 
| 48 | 
            +
            ## Dataset Overview
         | 
| 49 | 
            +
            The [TRSAv1 dataset](https://huggingface.co/maydogan/Turkish_SentimentAnalysis_TRSAv1) includes 150,000 Turkish product reviews from e-commerce platforms. It is balanced across three sentiment classes:
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            | Sentiment    | Count                 |
         | 
| 52 | 
            +
            |--------------|-----------------------|
         | 
| 53 | 
            +
            | Negative     | 50,000                |
         | 
| 54 | 
            +
            | Neutral      | 50,000                |
         | 
| 55 | 
            +
            | Positive     | 50,000                |
         | 
| 56 | 
            +
            | TOTAL        | 150,000               |
         | 
| 57 | 
            +
            ---
         | 
| 58 | 
            +
            ## Evaluation Results
         | 
| 59 | 
            +
            ### Overall Performance
         | 
| 60 | 
            +
            | Accuracy (%)    | Precision (%)    | Recall (%)      | F1 Score (%)      |
         | 
| 61 | 
            +
            |-----------------|------------------|-----------------|-------------------|
         | 
| 62 | 
            +
            | 83.68           | 83.69            | 83.68           | 83.66             |
         | 
| 63 | 
            +
            ### Class-wise Performance
         | 
| 64 | 
            +
            | Sentiment       | Precision (%)    | Recall (%)      | F1 Score (%)      |
         | 
| 65 | 
            +
            |-----------------|------------------|-----------------|-------------------|
         | 
| 66 | 
            +
            | Negative        | 88.35            | 85.20           | 86.74             |
         | 
| 67 | 
            +
            | Neutral         | 77.01            | 76.45           | 76.73             |
         | 
| 68 | 
            +
            | Positive        | 85.70            | 89.38           | 87.50             |
         | 
| 69 | 
            +
            ---
         | 
| 70 | 
            +
            ## Acknowledgments
         | 
| 71 | 
            +
            Special thanks to [maydogan](https://huggingface.co/maydogan) for their contributions and support.
         | 
| 72 | 
            +
            ---
         | 
