Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets:
|
| 3 |
+
- maydogan/Turkish_SentimentAnalysis_TRSAv1
|
| 4 |
+
language:
|
| 5 |
+
- tr
|
| 6 |
+
metrics:
|
| 7 |
+
- accuracy
|
| 8 |
+
- precision
|
| 9 |
+
- recall
|
| 10 |
+
- f1
|
| 11 |
+
base_model:
|
| 12 |
+
- dbmdz/bert-base-turkish-128k-cased
|
| 13 |
+
pipeline_tag: text-classification
|
| 14 |
+
tags:
|
| 15 |
+
- Turkish Sentiment Analysis
|
| 16 |
+
---
|
| 17 |
+
# 🇹🇷 BERTurk for Turkish Sentiment Analysis
|
| 18 |
+
This model is a fine-tuned version of [BERTurk 32k](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the [TRSAv1 dataset](https://huggingface.co/maydogan/Turkish_SentimentAnalysis_TRSAv1), a labeled collection of Turkish e-commerce reviews categorized into positive, neutral, and negative sentiments. For more details about the dataset, methodology, and experiments, you can refer to the corresponding [research paper](https://dergipark.org.tr/en/pub/ejt/issue/92270/1592448).
|
| 19 |
+
|
| 20 |
+
---
|
| 21 |
+
## How to Use
|
| 22 |
+
|
| 23 |
+
You can use the model directly with 🤗 Transformers:
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
from transformers import pipeline
|
| 27 |
+
|
| 28 |
+
classifier = pipeline("text-classification", model="incidelen/bert-base-turkish-sentiment-analysis-cased")
|
| 29 |
+
result = classifier("Ürün çok kaliteli, paketleme harikaydı. Kesinlikle tavsiye ederim!")
|
| 30 |
+
print(result)
|
| 31 |
+
```
|
| 32 |
+
---
|
| 33 |
+
## Citation
|
| 34 |
+
If you use this model in your research or application, please cite the following paper:
|
| 35 |
+
|
| 36 |
+
```
|
| 37 |
+
@article{incidelen15sentiment,
|
| 38 |
+
title={Sentiment Analysis in Turkish Using Language Models: A Comparative Study},
|
| 39 |
+
author={{\.I}ncidelen, Mert and Aydo{\u{g}}an, Murat},
|
| 40 |
+
journal={European Journal of Technique (EJT)},
|
| 41 |
+
volume={15},
|
| 42 |
+
number={1},
|
| 43 |
+
pages={68--74},
|
| 44 |
+
publisher={Hibetullah KILI{\c{C}}}
|
| 45 |
+
}
|
| 46 |
+
```
|
| 47 |
+
---
|
| 48 |
+
## Dataset Overview
|
| 49 |
+
The [TRSAv1 dataset](https://huggingface.co/maydogan/Turkish_SentimentAnalysis_TRSAv1) includes 150,000 Turkish product reviews from e-commerce platforms. It is balanced across three sentiment classes:
|
| 50 |
+
|
| 51 |
+
| Sentiment | Count |
|
| 52 |
+
|--------------|-----------------------|
|
| 53 |
+
| Negative | 50,000 |
|
| 54 |
+
| Neutral | 50,000 |
|
| 55 |
+
| Positive | 50,000 |
|
| 56 |
+
| TOTAL | 150,000 |
|
| 57 |
+
---
|
| 58 |
+
## Evaluation Results
|
| 59 |
+
### Overall Performance
|
| 60 |
+
| Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) |
|
| 61 |
+
|-----------------|------------------|-----------------|-------------------|
|
| 62 |
+
| 83.68 | 83.69 | 83.68 | 83.66 |
|
| 63 |
+
### Class-wise Performance
|
| 64 |
+
| Sentiment | Precision (%) | Recall (%) | F1 Score (%) |
|
| 65 |
+
|-----------------|------------------|-----------------|-------------------|
|
| 66 |
+
| Negative | 88.35 | 85.20 | 86.74 |
|
| 67 |
+
| Neutral | 77.01 | 76.45 | 76.73 |
|
| 68 |
+
| Positive | 85.70 | 89.38 | 87.50 |
|
| 69 |
+
---
|
| 70 |
+
## Acknowledgments
|
| 71 |
+
Special thanks to [maydogan](https://huggingface.co/maydogan) for their contributions and support.
|
| 72 |
+
---
|