incidelen commited on
Commit
8caeb53
·
verified ·
1 Parent(s): 37dea08

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - maydogan/Turkish_SentimentAnalysis_TRSAv1
4
+ language:
5
+ - tr
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ base_model:
12
+ - dbmdz/bert-base-turkish-128k-cased
13
+ pipeline_tag: text-classification
14
+ tags:
15
+ - Turkish Sentiment Analysis
16
+ ---
17
+ # 🇹🇷 BERTurk for Turkish Sentiment Analysis
18
+ This model is a fine-tuned version of [BERTurk 32k](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the [TRSAv1 dataset](https://huggingface.co/maydogan/Turkish_SentimentAnalysis_TRSAv1), a labeled collection of Turkish e-commerce reviews categorized into positive, neutral, and negative sentiments. For more details about the dataset, methodology, and experiments, you can refer to the corresponding [research paper](https://dergipark.org.tr/en/pub/ejt/issue/92270/1592448).
19
+
20
+ ---
21
+ ## How to Use
22
+
23
+ You can use the model directly with 🤗 Transformers:
24
+
25
+ ```python
26
+ from transformers import pipeline
27
+
28
+ classifier = pipeline("text-classification", model="incidelen/bert-base-turkish-sentiment-analysis-cased")
29
+ result = classifier("Ürün çok kaliteli, paketleme harikaydı. Kesinlikle tavsiye ederim!")
30
+ print(result)
31
+ ```
32
+ ---
33
+ ## Citation
34
+ If you use this model in your research or application, please cite the following paper:
35
+
36
+ ```
37
+ @article{incidelen15sentiment,
38
+ title={Sentiment Analysis in Turkish Using Language Models: A Comparative Study},
39
+ author={{\.I}ncidelen, Mert and Aydo{\u{g}}an, Murat},
40
+ journal={European Journal of Technique (EJT)},
41
+ volume={15},
42
+ number={1},
43
+ pages={68--74},
44
+ publisher={Hibetullah KILI{\c{C}}}
45
+ }
46
+ ```
47
+ ---
48
+ ## Dataset Overview
49
+ The [TRSAv1 dataset](https://huggingface.co/maydogan/Turkish_SentimentAnalysis_TRSAv1) includes 150,000 Turkish product reviews from e-commerce platforms. It is balanced across three sentiment classes:
50
+
51
+ | Sentiment | Count |
52
+ |--------------|-----------------------|
53
+ | Negative | 50,000 |
54
+ | Neutral | 50,000 |
55
+ | Positive | 50,000 |
56
+ | TOTAL | 150,000 |
57
+ ---
58
+ ## Evaluation Results
59
+ ### Overall Performance
60
+ | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) |
61
+ |-----------------|------------------|-----------------|-------------------|
62
+ | 83.68 | 83.69 | 83.68 | 83.66 |
63
+ ### Class-wise Performance
64
+ | Sentiment | Precision (%) | Recall (%) | F1 Score (%) |
65
+ |-----------------|------------------|-----------------|-------------------|
66
+ | Negative | 88.35 | 85.20 | 86.74 |
67
+ | Neutral | 77.01 | 76.45 | 76.73 |
68
+ | Positive | 85.70 | 89.38 | 87.50 |
69
+ ---
70
+ ## Acknowledgments
71
+ Special thanks to [maydogan](https://huggingface.co/maydogan) for their contributions and support.
72
+ ---