Update model card: Refine pipeline tag, license, and add project page (#1)
Browse files- Update model card: Refine pipeline tag, license, and add project page (b56f665c303cdf321d0473cd96e65e0b7537b16c)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,18 +1,20 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
- language-modeling
|
5 |
-
- causal-lm
|
6 |
-
- bias-analysis
|
7 |
-
- cognitive-bias
|
8 |
datasets:
|
9 |
- allenai/tulu-v2-sft-mixture
|
10 |
language:
|
11 |
- en
|
12 |
-
base_model:
|
13 |
-
- google/t5-v1_1-xxl
|
14 |
-
pipeline_tag: text2text-generation
|
15 |
library_name: transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
---
|
17 |
|
18 |
# Model Card for T5-Tulu
|
@@ -23,13 +25,14 @@ library_name: transformers
|
|
23 |
This 🤗 Transformers model was finetuned using LoRA adapters for the arXiv paper:
|
24 |
**"Planted in Pretraining, Swayed by Finetuning: A Case Study on the Origins of Cognitive Biases in LLMs"**
|
25 |
We study whether cognitive biases in LLMs emerge from pretraining, instruction tuning, or training randomness.
|
26 |
-
This is one of 3
|
27 |
|
28 |
- **Model type**: encoder-decoder based transformer
|
29 |
- **Language(s)**: English
|
30 |
-
- **License**:
|
31 |
- **Finetuned from**: `google/t5-v1_1-xxl`
|
32 |
- **Paper**: https://arxiv.org/abs/2507.07186
|
|
|
33 |
- **Repository**: https://github.com/itay1itzhak/planted-in-pretraining
|
34 |
|
35 |
## Uses
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- google/t5-v1_1-xxl
|
|
|
|
|
|
|
|
|
4 |
datasets:
|
5 |
- allenai/tulu-v2-sft-mixture
|
6 |
language:
|
7 |
- en
|
|
|
|
|
|
|
8 |
library_name: transformers
|
9 |
+
license: mit
|
10 |
+
pipeline_tag: text-generation
|
11 |
+
tags:
|
12 |
+
- language-modeling
|
13 |
+
- causal-lm
|
14 |
+
- bias-analysis
|
15 |
+
- cognitive-bias
|
16 |
+
metrics:
|
17 |
+
- accuracy
|
18 |
---
|
19 |
|
20 |
# Model Card for T5-Tulu
|
|
|
25 |
This 🤗 Transformers model was finetuned using LoRA adapters for the arXiv paper:
|
26 |
**"Planted in Pretraining, Swayed by Finetuning: A Case Study on the Origins of Cognitive Biases in LLMs"**
|
27 |
We study whether cognitive biases in LLMs emerge from pretraining, instruction tuning, or training randomness.
|
28 |
+
This is one of 3 identical versions trained with different random seeds.
|
29 |
|
30 |
- **Model type**: encoder-decoder based transformer
|
31 |
- **Language(s)**: English
|
32 |
+
- **License**: MIT
|
33 |
- **Finetuned from**: `google/t5-v1_1-xxl`
|
34 |
- **Paper**: https://arxiv.org/abs/2507.07186
|
35 |
+
- **Project Page**: https://itay1itzhak.github.io/planted-in-pretraining
|
36 |
- **Repository**: https://github.com/itay1itzhak/planted-in-pretraining
|
37 |
|
38 |
## Uses
|