Create pnp_utils.py
Browse files- pnp_utils.py +172 -0
pnp_utils.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
def seed_everything(seed):
|
| 7 |
+
torch.manual_seed(seed)
|
| 8 |
+
torch.cuda.manual_seed(seed)
|
| 9 |
+
random.seed(seed)
|
| 10 |
+
np.random.seed(seed)
|
| 11 |
+
|
| 12 |
+
def register_time(model, t):
|
| 13 |
+
# register current timestamp to each layer
|
| 14 |
+
down_res_dict = {0: [0, 1], 1: [0, 1], 2: [0, 1], 3: [0, 1]}
|
| 15 |
+
up_res_dict = {0:[0, 1, 2], 1: [0, 1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
|
| 16 |
+
for res in up_res_dict:
|
| 17 |
+
for block in up_res_dict[res]:
|
| 18 |
+
if hasattr(model.unet.up_blocks[res], "attentions"):
|
| 19 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
|
| 20 |
+
setattr(module, 't', t)
|
| 21 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn2
|
| 22 |
+
setattr(module, 't', t)
|
| 23 |
+
conv_module = model.unet.up_blocks[res].resnets[block]
|
| 24 |
+
setattr(conv_module, 't', t)
|
| 25 |
+
for res in down_res_dict:
|
| 26 |
+
for block in down_res_dict[res]:
|
| 27 |
+
if hasattr(model.unet.down_blocks[res], "attentions"):
|
| 28 |
+
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn1
|
| 29 |
+
setattr(module, 't', t)
|
| 30 |
+
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn2
|
| 31 |
+
setattr(module, 't', t)
|
| 32 |
+
conv_module = model.unet.down_blocks[res].resnets[block]
|
| 33 |
+
setattr(conv_module, 't', t)
|
| 34 |
+
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn1
|
| 35 |
+
setattr(module, 't', t)
|
| 36 |
+
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn2
|
| 37 |
+
setattr(module, 't', t)
|
| 38 |
+
|
| 39 |
+
def register_attention_control(model, injection_schedule, num_inputs):
|
| 40 |
+
def sa_forward(self):
|
| 41 |
+
to_out = self.to_out
|
| 42 |
+
if type(to_out) is torch.nn.modules.container.ModuleList:
|
| 43 |
+
to_out = self.to_out[0]
|
| 44 |
+
else:
|
| 45 |
+
to_out = self.to_out
|
| 46 |
+
|
| 47 |
+
def forward(x, encoder_hidden_states=None, attention_mask=None, **kwargs):
|
| 48 |
+
batch_size, sequence_length, dim = x.shape
|
| 49 |
+
h = self.heads
|
| 50 |
+
|
| 51 |
+
is_cross = encoder_hidden_states is not None
|
| 52 |
+
encoder_hidden_states = encoder_hidden_states if is_cross else x
|
| 53 |
+
|
| 54 |
+
v = self.to_v(encoder_hidden_states)
|
| 55 |
+
v = self.head_to_batch_dim(v)
|
| 56 |
+
|
| 57 |
+
if not is_cross and self.injection_schedule is not None and (
|
| 58 |
+
self.t in self.injection_schedule or self.t == 1000):
|
| 59 |
+
q = self.to_q(x)
|
| 60 |
+
k = self.to_k(encoder_hidden_states)
|
| 61 |
+
|
| 62 |
+
source_batch_size = int(q.shape[0] // num_inputs)
|
| 63 |
+
|
| 64 |
+
q = q[:source_batch_size]
|
| 65 |
+
k = k[:source_batch_size]
|
| 66 |
+
q = self.head_to_batch_dim(q)
|
| 67 |
+
k = self.head_to_batch_dim(k)
|
| 68 |
+
|
| 69 |
+
else:
|
| 70 |
+
q = self.to_q(x)
|
| 71 |
+
k = self.to_k(encoder_hidden_states)
|
| 72 |
+
q = self.head_to_batch_dim(q)
|
| 73 |
+
k = self.head_to_batch_dim(k)
|
| 74 |
+
|
| 75 |
+
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
|
| 76 |
+
|
| 77 |
+
if attention_mask is not None:
|
| 78 |
+
attention_mask = attention_mask.reshape(batch_size, -1)
|
| 79 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 80 |
+
attention_mask = attention_mask[:, None, :].repeat(h, 1, 1)
|
| 81 |
+
sim.masked_fill_(~attention_mask, max_neg_value)
|
| 82 |
+
|
| 83 |
+
# attention, what we cannot get enough of
|
| 84 |
+
attn = sim.softmax(dim=-1)
|
| 85 |
+
|
| 86 |
+
if not is_cross and self.injection_schedule is not None and (
|
| 87 |
+
self.t in self.injection_schedule or self.t == 1000):
|
| 88 |
+
# Inject attention map from source
|
| 89 |
+
# attn = torch.cat([attn] * num_inputs, dim = 0)
|
| 90 |
+
attn = attn.repeat(num_inputs, 1, 1)
|
| 91 |
+
|
| 92 |
+
out = torch.einsum("b i j, b j d -> b i d", attn, v)
|
| 93 |
+
out = self.batch_to_head_dim(out)
|
| 94 |
+
|
| 95 |
+
return to_out(out)
|
| 96 |
+
|
| 97 |
+
return forward
|
| 98 |
+
|
| 99 |
+
# we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution
|
| 100 |
+
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
|
| 101 |
+
for res in res_dict:
|
| 102 |
+
for block in res_dict[res]:
|
| 103 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
|
| 104 |
+
module.forward = sa_forward(module)
|
| 105 |
+
setattr(module, 'injection_schedule', injection_schedule)
|
| 106 |
+
print("[INFO-PnP] Register Source Attention QK Injection in Up Res", res_dict)
|
| 107 |
+
|
| 108 |
+
def register_conv_control(model, injection_schedule, num_inputs):
|
| 109 |
+
def conv_forward(self):
|
| 110 |
+
def forward(input_tensor, temb, **kwargs):
|
| 111 |
+
hidden_states = input_tensor
|
| 112 |
+
|
| 113 |
+
hidden_states = self.norm1(hidden_states)
|
| 114 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 115 |
+
|
| 116 |
+
if self.upsample is not None:
|
| 117 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
| 118 |
+
if hidden_states.shape[0] >= 64:
|
| 119 |
+
input_tensor = input_tensor.contiguous()
|
| 120 |
+
hidden_states = hidden_states.contiguous()
|
| 121 |
+
input_tensor = self.upsample(input_tensor)
|
| 122 |
+
hidden_states = self.upsample(hidden_states)
|
| 123 |
+
elif self.downsample is not None:
|
| 124 |
+
input_tensor = self.downsample(input_tensor)
|
| 125 |
+
hidden_states = self.downsample(hidden_states)
|
| 126 |
+
|
| 127 |
+
hidden_states = self.conv1(hidden_states)
|
| 128 |
+
|
| 129 |
+
if temb is not None:
|
| 130 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[
|
| 131 |
+
:, :, None, None]
|
| 132 |
+
|
| 133 |
+
if temb is not None and self.time_embedding_norm == "default":
|
| 134 |
+
hidden_states = hidden_states + temb
|
| 135 |
+
|
| 136 |
+
hidden_states = self.norm2(hidden_states)
|
| 137 |
+
|
| 138 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
| 139 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
| 140 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 141 |
+
|
| 142 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 143 |
+
|
| 144 |
+
hidden_states = self.dropout(hidden_states)
|
| 145 |
+
hidden_states = self.conv2(hidden_states)
|
| 146 |
+
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
|
| 147 |
+
source_batch_size = int(hidden_states.shape[0] // num_inputs)
|
| 148 |
+
|
| 149 |
+
# inject unconditional
|
| 150 |
+
hidden_states[source_batch_size:2 *
|
| 151 |
+
source_batch_size] = hidden_states[:source_batch_size]
|
| 152 |
+
# inject conditional
|
| 153 |
+
if num_inputs > 2:
|
| 154 |
+
hidden_states[2 * source_batch_size:3 *
|
| 155 |
+
source_batch_size] = hidden_states[:source_batch_size]
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
if self.conv_shortcut is not None:
|
| 159 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
| 160 |
+
|
| 161 |
+
output_tensor = (input_tensor + hidden_states) / \
|
| 162 |
+
self.output_scale_factor
|
| 163 |
+
|
| 164 |
+
return output_tensor
|
| 165 |
+
|
| 166 |
+
return forward
|
| 167 |
+
|
| 168 |
+
res_dict = {1: [1]}
|
| 169 |
+
conv_module = model.unet.up_blocks[1].resnets[1]
|
| 170 |
+
conv_module.forward = conv_forward(conv_module)
|
| 171 |
+
setattr(conv_module, 'injection_schedule', injection_schedule)
|
| 172 |
+
print("[INFO-PnP] Register Source Feature Injection in Up Res", res_dict)
|