In case you missed it, Hugging Face expanded its collaboration with Azure a few weeks ago with a curated catalog of 10,000 models, accessible from Azure AI Foundry and Azure ML!
@alvarobartt cooked during these last days to prepare the one and only documentation you need, if you wanted to deploy Hugging Face models on Azure. It comes with an FAQ, great guides and examples on how to deploy VLMs, LLMs, smolagents and more to come very soon.
We need your feedback: come help us and let us know what else you want to see, which model we should add to the collection, which model task we should prioritize adding, what else we should build a tutorial for. You’re just an issue away on our GitHub repo!
AMD summer hackathons are here! A chance to get hands-on with MI300X GPUs and accelerate models. 🇫🇷 Paris - Station F - July 5-6 🇮🇳 Mumbai - July 12-13 🇮🇳 Bengaluru - July 19-20
Hugging Face and GPU Mode will be on site and on July 6 in Paris @ror will share lessons learned while building new kernels to accelerate Llama 3.1 405B on ROCm
Hugging Face just wrapped 4 months of deep work with AMD to push kernel-level optimization on their MI300X GPUs. Now, it's time to share everything we learned.
Join us in Paris at STATION F for a hands-on weekend of workshops and a hackathon focused on making open-source LLMs faster and more efficient on AMD.
Prizes, amazing host speakers, ... if you want more details, navigate to https://lu.ma/fmvdjmur!
Every language carries its own cultural values and worldviews. So, when we build AI systems, we're not just deciding how they speak but also whose perspectives they represent.
Even choosing which dialect to train on in Norway becomes a question of inclusion and power. In Kenya, will AI speak Swahili from Nairobi or coastal regions? What about indigenous languages with rich oral traditions but limited written text, like Quechua in Peru or Cherokee in North America?
The path forward? Building WITH communities, not just FOR them. Working with local partners (libraries, universities, civil society), testing for cultural alignment, and asking hard questions about representation.
Super excited to launch Hugging Face Sheets: Spreadsheets meet AI and unstructured data.
A few months ago, we started imagining new ways to build and transform datasets with the latest open-source models.
Today, I'm thrilled to introduce our first step in this direction.
In a nutshell:
📁 Effortlessly run prompts and models over your data. 🌐 Agentic search for accuracy and real-time information. 🖼️ Familiar, minimalistic interface for interacting with data. 🎯 Human feedback 2.0: Your input directly improves generated data. 💯 Access hundreds of open models and leading inference providers.
We have been working on a project called kernels. kernels makes it possible to load compute kernels directly from the Hub! 🚀
We plan to give kernels a more proper introduction soon. But for those who have been following along, we are happy to announce a new release:
- New layer API with torch.compile support. - Experimental support for loading Apple Silicon Metal 🤘 Kernels. - Generate wheels from Hub kernels for legacy deployments.
Wrapping up a week of shipping and announcements with Dell Enterprise Hub now featuring AI Applications, on-device models for AI PCs, a new CLI and Python SDK... all you need for building AI on premises!