Add models, yaml cards and tensorboard logs
Browse files
data/JetClassII/JetClassII_ak4unscaled_full.yaml
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
selection:
|
| 2 |
+
### use `&`, `|`, `~` for logical operations on numpy arrays
|
| 3 |
+
### can use functions from `math`, `np` (numpy), and `awkward` in the expression
|
| 4 |
+
(jet_pt > 15) & (jet_pt < 1000) & (np.abs(jet_eta) < 5) & (jet_label < 23)
|
| 5 |
+
|
| 6 |
+
new_variables:
|
| 7 |
+
### [format] name: formula
|
| 8 |
+
### can use functions from `math`, `np` (numpy), and `awkward` in the expression
|
| 9 |
+
part_mask: ak.ones_like(part_energy)
|
| 10 |
+
|
| 11 |
+
# ## calculating scaled vectors
|
| 12 |
+
# part_px_scale: part_px / jet_pt * 500
|
| 13 |
+
# part_py_scale: part_py / jet_pt * 500
|
| 14 |
+
# part_pz_scale: part_pz / jet_pt * 500
|
| 15 |
+
# part_energy_scale: part_energy / jet_pt * 500
|
| 16 |
+
|
| 17 |
+
part_pt: np.hypot(part_px, part_py)
|
| 18 |
+
part_pt_log: np.log(part_pt)
|
| 19 |
+
part_e_log: np.log(part_energy)
|
| 20 |
+
# part_pt_scale: np.hypot(part_px_scale, part_py_scale)
|
| 21 |
+
# part_pt_scale_log: np.log(part_pt_scale)
|
| 22 |
+
# part_e_scale_log: np.log(part_energy_scale)
|
| 23 |
+
part_logptrel: np.log(part_pt/jet_pt)
|
| 24 |
+
part_logerel: np.log(part_energy/jet_energy)
|
| 25 |
+
part_deltaR: np.hypot(part_deta, part_dphi)
|
| 26 |
+
part_d0: np.tanh(part_d0val)
|
| 27 |
+
part_dz: np.tanh(part_dzval)
|
| 28 |
+
|
| 29 |
+
# classes for reweighting
|
| 30 |
+
label_B: (((jet_label >= 0) & (jet_label < 2)) | (jet_label == 17))
|
| 31 |
+
label_C: (((jet_label >= 2) & (jet_label < 4)) | (jet_label == 18))
|
| 32 |
+
label_S: (((jet_label >= 4) & (jet_label < 6)) | (jet_label == 19))
|
| 33 |
+
label_D: (((jet_label >= 6) & (jet_label < 8)) | (jet_label == 20))
|
| 34 |
+
label_U: (((jet_label >= 8) & (jet_label < 10)) | (jet_label == 21))
|
| 35 |
+
label_G: ((jet_label == 10) | (jet_label == 22))
|
| 36 |
+
label_e: ((jet_label >= 11) & (jet_label < 13))
|
| 37 |
+
label_m: ((jet_label >= 13) & (jet_label < 15))
|
| 38 |
+
label_tauh: ((jet_label >= 15) & (jet_label < 17))
|
| 39 |
+
|
| 40 |
+
preprocess:
|
| 41 |
+
### method: [manual, auto] - whether to use manually specified parameters for variable standardization
|
| 42 |
+
method: manual
|
| 43 |
+
### data_fraction: fraction of events to use when calculating the mean/scale for the standardization
|
| 44 |
+
data_fraction: 0.5
|
| 45 |
+
|
| 46 |
+
inputs:
|
| 47 |
+
pf_points:
|
| 48 |
+
length: 128
|
| 49 |
+
pad_mode: wrap
|
| 50 |
+
vars:
|
| 51 |
+
- [part_deta, null]
|
| 52 |
+
- [part_dphi, null]
|
| 53 |
+
pf_features:
|
| 54 |
+
length: 128
|
| 55 |
+
pad_mode: wrap
|
| 56 |
+
vars:
|
| 57 |
+
### [format 1]: var_name (no transformation)
|
| 58 |
+
### [format 2]: [var_name,
|
| 59 |
+
### subtract_by(optional, default=None, no transf. if preprocess.method=manual, auto transf. if preprocess.method=auto),
|
| 60 |
+
### multiply_by(optional, default=1),
|
| 61 |
+
### clip_min(optional, default=-5),
|
| 62 |
+
### clip_max(optional, default=5),
|
| 63 |
+
### pad_value(optional, default=0)]
|
| 64 |
+
- [part_pt_log, 1.7, 0.7]
|
| 65 |
+
- [part_e_log, 2.0, 0.7]
|
| 66 |
+
- [part_logptrel, -4.7, 0.7]
|
| 67 |
+
- [part_logerel, -4.7, 0.7]
|
| 68 |
+
- [part_deltaR, 0.2, 4.0]
|
| 69 |
+
- [part_charge, null]
|
| 70 |
+
- [part_isChargedHadron, null]
|
| 71 |
+
- [part_isNeutralHadron, null]
|
| 72 |
+
- [part_isPhoton, null]
|
| 73 |
+
- [part_isElectron, null]
|
| 74 |
+
- [part_isMuon, null]
|
| 75 |
+
- [part_d0, null]
|
| 76 |
+
- [part_d0err, 0, 1, 0, 1]
|
| 77 |
+
- [part_dz, null]
|
| 78 |
+
- [part_dzerr, 0, 1, 0, 1]
|
| 79 |
+
- [part_deta, null]
|
| 80 |
+
- [part_dphi, null]
|
| 81 |
+
pf_vectors:
|
| 82 |
+
length: 128
|
| 83 |
+
pad_mode: wrap
|
| 84 |
+
vars:
|
| 85 |
+
- [part_px, null]
|
| 86 |
+
- [part_py, null]
|
| 87 |
+
- [part_pz, null]
|
| 88 |
+
- [part_energy, null]
|
| 89 |
+
pf_mask:
|
| 90 |
+
length: 128
|
| 91 |
+
pad_mode: constant
|
| 92 |
+
vars:
|
| 93 |
+
- [part_mask, null]
|
| 94 |
+
|
| 95 |
+
labels:
|
| 96 |
+
### type can be `simple`, `custom`
|
| 97 |
+
### [option 1] use `simple` for binary/multi-class classification, then `value` is a list of 0-1 labels
|
| 98 |
+
### [option 2] otherwise use `custom` to define the label, then `value` is a map
|
| 99 |
+
type: custom
|
| 100 |
+
value:
|
| 101 |
+
truth_label: jet_label
|
| 102 |
+
|
| 103 |
+
### notes on `jet_label`:
|
| 104 |
+
### - ranges from 0-22;
|
| 105 |
+
### - a full list of label names: [label_b, label_bbar, label_c, label_cbar, label_s, label_sbar, label_d, label_dbar, label_u, label_ubar, label_g, label_em, label_ep, label_mm, label_mp, label_tauhm, label_tauhp, label_bbbar, label_ccbar, label_ssbar, label_ddbar, label_uubar, label_gg]
|
| 106 |
+
|
| 107 |
+
observers:
|
| 108 |
+
- jet_pt
|
| 109 |
+
- jet_eta
|
| 110 |
+
- jet_phi
|
| 111 |
+
- jet_energy
|
| 112 |
+
- jet_nparticles
|
| 113 |
+
- jet_mass
|
| 114 |
+
|
| 115 |
+
weights:
|
| 116 |
+
### [option 1] use precomputed weights stored in the input files
|
| 117 |
+
# use_precomputed_weights: true
|
| 118 |
+
# weight_branches: [weight, class_weight]
|
| 119 |
+
### [option 2] compute weights on-the-fly using reweighting histograms
|
| 120 |
+
use_precomputed_weights: false
|
| 121 |
+
reweight_method: flat
|
| 122 |
+
reweight_vars:
|
| 123 |
+
jet_pt: [15, 20, 26, 35, 46, 61, 80, 106, 141, 186, 247, 326, 432, 571, 756, 1000]
|
| 124 |
+
jet_eta: [-10, 10]
|
| 125 |
+
reweight_classes:
|
| 126 |
+
[
|
| 127 |
+
label_B, label_C, label_S, label_D, label_U, label_G, label_e, label_m, label_tauh,
|
| 128 |
+
]
|
| 129 |
+
class_weights:
|
| 130 |
+
[
|
| 131 |
+
1.0, 1.0, 1.0, 0.5, 0.5, 1.0, 0.5, 0.5, 1.0,
|
| 132 |
+
]
|
| 133 |
+
reweight_hists:
|
models/JetClassII_SophonAK4/model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df06a3246907dcc8e19d1263eb0e36d9e06de997b7534baf176c7e3672325566
|
| 3 |
+
size 2497916
|
models/JetClassII_SophonAK4/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8b32a2e71f1f3a3921f0886eda496ee85937896a8d654d20cc33783e016afe24
|
| 3 |
+
size 2271841
|
tb_logs/events.out.tfevents.trainval.000
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cdbd125c9ab9db4bf221548b1ef987b2e880682d6f15f7991c4dc3c3b5502ab8
|
| 3 |
+
size 3978173
|
tb_logs/events.out.tfevents.trainval.001
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e6f00f991a2d68a2044bfc9dfce6df12ad0ede55eea82f84110ed3fba6f406f6
|
| 3 |
+
size 3978173
|